
Copyright	©	2016	Splunk	Inc.	

Jason	Conger	
Staff	Solu=ons	Architect,	Splunk	

Best	Prac=ces	for	Developing	Splunk	Apps	
and	Add-ons	

Disclaimer	

2	

During	the	course	of	this	presenta=on,	we	may	make	forward	looking	statements	regarding	future	
events	or	the	expected	performance	of	the	company.	We	cau=on	you	that	such	statements	reflect	our	
current	expecta=ons	and	es=mates	based	on	factors	currently	known	to	us	and	that	actual	events	or	
results	could	differ	materially.	For	important	factors	that	may	cause	actual	results	to	differ	from	those	
contained	in	our	forward-looking	statements,	please	review	our	filings	with	the	SEC.	The	forward-
looking	statements	made	in	the	this	presenta=on	are	being	made	as	of	the	=me	and	date	of	its	live	
presenta=on.	If	reviewed	aQer	its	live	presenta=on,	this	presenta=on	may	not	contain	current	or	

accurate	informa=on.	We	do	not	assume	any	obliga=on	to	update	any	forward	looking	statements	we	
may	make.	In	addi=on,	any	informa=on	about	our	roadmap	outlines	our	general	product	direc=on	and	is	

subject	to	change	at	any	=me	without	no=ce.	It	is	for	informa=onal	purposes	only	and	shall	not,	be	
incorporated	into	any	contract	or	other	commitment.	Splunk	undertakes	no	obliga=on	either	to	develop	
the	features	or	func=onality	described	or	to	include	any	such	feature	or	func=onality	in	a	future	release.	

jason.conger@splunk.com		

@JasonConger	

hTp://www.linkedin.com/in/JasonConger	

blogs.splunk.com/author/jconger/		
www.JasonConger.com	

4+	years	at	Splunk	

Created	or	consulted	on	numerous	Splunkbase	
applica=ons	

whoami	

3	

	

	

	

Staff	Solu=ons	Architect	
Global	Strategic	Alliances	

Agenda	

1.  Crea=ng	a	Splunk	Applica=on	
2.  Ge[ng	data	into	Splunk	
3.  Asking	ques=ons	of	your	data	with	Splunk	

4	

5	

“I	wish	I	knew	these	things	before	I	ever	built	my	
first	Splunk	Applica=on”	

-	Jason	Conger	

6	

2

7	

2

8	

2

1	
Crea=ng	An	Applica=on	

9	

Naming	the	Directory	for	Your	App	or	Add-on	

This	part	will	be	
the	id	in	app.conf	

Naming	the	Directory	for	Your	App	or	Add-on	
q For	applica=ons	(dashboards,	forms,	alerts,	etc.):	

•  Vendor-app-product	(example	=	acme-app-widget)	

q For	add-ons	(data	collec=on	with	no	dashboards):	
•  TA_vendor-product	(example:	TA_acme-widget)	

q For	Enterprise	Security	add-ons:	
•  TA-<datasource>	(example:	TA-snort)	
	
	
Note:	you	may	see	some	other	naming	standards	such	as	SA	or	DA	out	there.	

Naming	Your	App	or	Add-on	

12	

Note:	aQer	uploading	an	applica=on	to	Splunkbase,	the	directory	
name	and	the	“id”	parameter	in	app.conf	cannot	be	changed.			
	
The	actual	name	of	the	applica=on	displayed	on	the	Splunk	start	
screen	and	on	Splunkbase	is	controlled	by	a	file	named	app.conf	
and	is	independent	of	the	directory	name	men=oned	previously.	
	

App	naming	guidelines	->	hTp://docs.splunk.com/Documenta=on/Splunkbase/latest/Splunkbase/Namingguidelines	

Should	You	Break	Up	Your	App?	

13	

Consolidated	App	 Distributed	App	

Should	You	Break	Up	Your	App?	

14	

  Do	you	need	to	collect	data	from	forwarders?	
  Need	to	share	knowledge	objects	with	mul=ple	apps?	
  Distributed	Environment?	
  The	Splunk	App	for	AWS	is	a	good	example	

depends	on	

Quick	Start	=	Splunk	Add-on	Builder	

15	

hTps://splunkbase.splunk.com/app/2962/		

16	

Use	the	Builder	on	Exis=ng	Content	Too	

17	

Note:	you	may	get	some	inapplicable	warnings	for	apps	since	this	version	is	mainly	about	add-ons.	

2 	
Ge[ng	Data	In	

18	

Ge[ng	Data	In	
Reaching	out	to	get	data	 Listening	for	data	

•  Reading	files	on	a	disk	
•  Windows	Inputs	

•  Perfmon	
•  Event	Logs	
•  Registry	
•  WMI	

•  Scripts*	
•  Modular	inputs*	

•  TCP	
•  UDP	
•  HTTP	
•  Stream	
•  Scripts*	
•  Modular	inputs*	

*	Scripts	and	modular	inputs	can	really	do	either	depending	on	what	you	code	

Best	Prac=ces	for	Logging	Data	to	be	Consumed	by	Splunk	

20	

  Log	in	text	format	
  Start	the	log	line	event	with	a	=me	stamp	
  Use	clear	key-value	pairs	
  Create	events	that	humans	can	read	
  Use	unique	iden=fiers	
  Keep	mul=-line	events	to	a	minimum	
  Use	JSON	(JavaScript	Object	Nota=on)	format	

hTp://dev.splunk.com/view/logging-best-prac=ces/SP-CAAADP6	

Best	Prac=ces	for	Wri=ng	Data	to	an	Index	

21	

Write	to	the	default	“main”	index	

main	 custom	index	
contains	foo=bar		
data	

?

Best	Prac=ces	for	Wri=ng	Data	to	an	Index	

22	

Write	to	the	default	“main”	index	

Custom_index	is	not	
searched	by	default	for	

this	user.	

23	

There	are	an	excep=ons	to	every	rule	

Excep=ons	to	using	the	“main”	Index	

24	

Tes=ng	–	wri=ng	data	to	a	test	index	during	development	allows	the	
developer	to	quickly	and	easily	clear	out	all	events	in	the	index	
without	impac=ng	other	events	elsewhere.	
$SPLUNK_HOME/bin/splunk clean eventdata custom_index

Reten=on	–	data	reten=on/aging	is	controlled	on	the	index	level.		
Some	administrators	may	want	to	have	custom	reten=on	policies	
based	on	the	type	of	data.	
Security	–	using	Splunk’s	RBAC,	the	administrator	can	control	who	
sees	what	data.	

Excep=ons	to	using	the	“main”	Index	

25	

Tes=ng	–	wri=ng	data	to	a	test	index	during	
development	allows	the	developer	to	quickly	and	
easily	clear	out	all	events	in	the	index	without	
impac=ng	other	events	elsewhere.	
Reten=on	–	data	reten=on/aging	is	controlled	on	the	
index	level.		Some	administrators	may	want	to	have	
custom	reten=on	policies	based	on	the	type	of	data.	
Security	–	using	Splunk’s	RBAC,	the	administrator	can	
control	who	sees	what	data.	

The	last	2	
excep=on	
decisions	

should	be	made	
by	the	Splunk	
admin	–	not	the	

developer.	

Get	to	Know	Your	Pipelines	

26	

Typing	

Timestamp	
Extrac=on	

Event	
Breaking	

Useful	Index	Time	Processing	ATributes	

27	

LINE_BREAKER														<where to break the stream>
SHOULD_LINEMERGE		<enable/disable merging>

MAX_TIMESTAMP_LOOKAHEAD			<# chars in to look for ts>
TIME_PREFIX							<pattern before ts>
TIME_FORMAT				<strptime format string to extract ts>

ANNOTATE_PUNCT			<enable/disable punct:: extraction>

Useful	Index	Time	Processing	ATributes	

28	

HT:	Dritan	Bi=ncka	

Adding	Inputs	

Scripted	versus	Modular	Inputs	

30	

Feature	 Scripted	Inputs	 Modular	Inputs	

End	user	configura=on	 Inline	arguments	
	
OQen	requires	edi=ng	text	configura=on	
files	

User	interface	provided	in	the	Splunk	Web	
interface.	
	
This	makes	the	input	“look	and	feel”	as	if	
it	were	a	na=ve	Splunk	feature.	

Mul=-playorm	support	 No	 Yes	
	
You	can	package	your	script	to	include	
versions	for	separate	playorms.	

Custom	REST	endpoints	 No	 Yes	
	
Modular	inputs	can	be	access	and	
manipulated	using	Splunk	REST	endpoints.	

Endpoint	permissions	 N/A	 Access	implemented	using	Splunk	
Enterprise	capabili=es.	

More	complete	informa=on	can	be	found	on	the	Splunk	documenta=on	page.		

	

Scripted	versus	Modular	Inputs	

31	

Scripted	inputs	are	more	suited	for	trivial	tasks	such	as	running	an	OS	
command	(like	top	for	*nix	or	Get-Process	from	Windows	PowerShell)	
and	sending	the	output	to	Splunk.	
	
Modular	inputs	are	more	suited	for	tasks	that	require	end	user	setup	
or	more	advanced	event	processing.		Calling	a	REST	API	with	
parameters	is	a	good	example	of	when	to	use	a	modular	input.	
	

This	or…	

32	

script://./bin/zenoss_wrapper.sh	-u	admin	-p	password	-a	h8p://	
zenoss:8080	-z	America/Los_Angeles	-t	4320	-r	90	-s	
2015-03-16T00:00:00	-index-closed-events	1	-index-cleared-events	1	-	
index-archived-events	1	-index-suppressed-events	1	-index-
repeatevents	1]		
	
sourcetype	=	zenoss-events		
interval	=	60		
index	=	zenoss	

33	

HT:	ScoT	Haskell	

Scripted	and	Modular	Input	Best	Prac=ces	

34	

Do	not	hard	code	paths	
	
Example	(Python):	
os.path.join(os.environ["SPLUNK_HOME"],'etc','apps',	APP_NAME)	
	
Example	(PowerShell):	
Join-Path	-path	(get-item	env:\SPLUNK_HOME).value	"Splunk\etc
\apps"		
	

Scripted	and	Modular	Input	Best	Prac=ces	

35	

Use	Error	Trapping	(so	that	you	can	search	them	in	the	_internal	index)	
	
import logging
try:

 Some code that may fail like opening a
file
except IOError, err:

 logging.error('%s - ERROR - File may not
exist %s\n' % (time.strftime("%Y-%m-%d %H:%M:
%S"), str(err)))

 pass
	

Scripted	and	Modular	Input	Best	Prac=ces	

36	

Error	Trapping	(you	can	use	stderr	too)	
	
try:

 Some code that may fail like opening a
file

except IOError, err:

 sys.stderr.write('%s - ERROR - File may
not exist %s\n' % (time.strftime("%Y-%m-%d %H:
%M:%S"), str(err)))

 pass
	

Scripted	and	Modular	Input	Best	Prac=ces	

37	

Use	Splunk	methods	to	read	cascaded	se[ngs	
	
Example	(Python):	

import splunk.clilib.cli_common

def __init__(self,obj):

 self.object = obj
 self.settings =

splunk.clilib.cli_common.getConfStanza("acme",
"default")
	

38	

  Give	more	explana=on	on	previous	slide	
  Men=on	someone	trying	to	read	from	default	and	write	to	local	
  Maybe	men=on	btool	too	

Scripted	and	Modular	Input	Best	Prac=ces	

39	

Disable	any	inputs	by	default	
	
inputs.conf:	

[my_stanza]
disabled = 1

	

Scripted	Inputs	Best	Prac=ces	
Test	Scripts	using	Splunk	CMD	
	
Mac:	
/Applications/Splunk/bin/splunk cmd python /Applications/
Splunk/etc/apps/<your app>/bin/<your script>

	
Windows:	
C:\Program Files\Splunk\bin\splunk.exe cmd C:\Program Files
\Splunk\etc\apps\<your app>\bin\<your script>

Modular	Inputs	Best	Prac=ces	
Use	Splunk	SDKs	(these	abstract	a	lot	of	code	for	you)	
	
Python	hTp://dev.splunk.com/view/python-sdk/SP-CAAAER3	
	
C#	hTp://dev.splunk.com/view/csharp-sdk/SP-CAAAEQH	
	
Java	hTp://dev.splunk.com/view/java-sdk/SP-CAAAER2	
	
	

41	

Modular	Input	SDKs	

42	

Before	=	453	lines	 AQer	=	92	lines	

Modular	Input	SDK	Logging	

43	

By	default,	only	
INFO	and	higher	
events	are	logged	
to	_internal.	

Modular	Inputs	Best	Prac=ces	
Validate	User	Input	
	
Try to connect to the Azure API to validate the given arguments
work
try:
 access_token = get_token_from_client_credentials(
 endpoint = val_data["token_endpoint"],
 client_id = val_data["client_id"],
 client_secret = val_data["client_secret"])
except Exception, e:
 raise Exception, "Could not connect to the Azure REST endpoint.
Check the token endpoint, client ID, and client secret/key: %s" %
str(e)

44	

Modular	Inputs	Best	Prac=ces	
Validate	User	Input	
	

45	

Modular	Inputs	Best	Prac=ces	
Test	Inputs	using	Splunk	CMD	
	
Example	(real):	
	
/Applications/Splunk/bin/splunk cmd splunkd print-modinput-
config AzureDiagnostics AzureDiagnostics://gsa1892 | /
Applications/Splunk/bin/splunk cmd python /Applications/
Splunk/etc/apps/TA_Azure/bin/AzureDiagnostics.py
	

Modular	Inputs	Best	Prac=ces	
Test	Inputs	using	Splunk	CMD	
	
Example	(real):	
	
/Applications/Splunk/bin/splunk cmd splunkd print-modinput-
config AzureDiagnostics AzureDiagnostics://gsa1892 | /
Applications/Splunk/bin/splunk cmd python /Applications/
Splunk/etc/apps/TA_Azure/bin/AzureDiagnostics.py
	

Input	code	

Name	of	the	input	 Instance	of	the	input	

Modular	Inputs	Best	Prac=ces	
Use	the	checkpoint	parameter	to	persist	data	
	
	

hTp://blogs.splunk.com/2016/05/11/splunking-con=nuous-rest-data/		

Eventgen	

49	

Anonymize	Eventgen	Samples	
Regex	Find	and	Replace	Tools	are	Your	Friend!	

50	

3 	
Asking	Ques=ons	of	
your	Data	

51	

Get	to	Know	the	Search	Pipeline	

52	

Find	
buckets	
based	on	

search	=me	
range	

For	each	bucket,	
check	tsidx	for	

events	that	match	
LISPY	and	find	
rawdata	offset	

For	each	
bucket,	read	
journal.gz	at	

offsets	supplied	
by	previous	

step	

Process	events:	
st	rename	

extract,	report,	
kv,	alias,	eval,	

lookup,	
subsecond	

Filter	events	to	
match	the	

search	string	
(+	evenTyping	

tagging)	

Write	
temporary	
results	to	
dispatch	
directory	

Root	search	

Return	progress	to	SH	splunkd	and	
repeat	un=l	the	search	finishes	

Get	to	Know	the	Order	of	Opera=ons	

53	

Find	
buckets	
based	on	

search	=me	
range	

For	each	bucket,	
check	tsidx	for	

events	that	match	
LISPY	and	find	
rawdata	offset	

For	each	
bucket,	read	
journal.gz	at	

offsets	supplied	
by	previous	

step	

Process	events:	
st	rename	

extract,	report,	
kv,	alias,	eval,	

lookup,	
subsecond	

Filter	events	to	
match	the	

search	string	
(+	evenTyping	

tagging)	

Write	
temporary	
results	to	
dispatch	
directory	

Root	search	

Return	progress	to	SH	splunkd	and	
repeat	un=l	the	search	finishes	

Sourcetype	RENAME	
EXTRACT-xxx	
REPORT-xxx	
KV_MODE	
FIELDALIAS	
EVAL-xxx	
LOOKUP-xxx	
MILLISECONDS	
FILTER	
EVENTTYPING	
TAGGING	

Parameterize	Root	Searches	
marcros.conf	example:	
[acme_index]
definition = index=acme
	
Example	search	using	macro:	
`acme_index` sourcetype=widiget |
stats count

Remember	that	main	index	thing	earlier?	

Get	to	Know	Distributed	Search	

55	

macros.conf	
[my_index]	
defini=on	=	index=main	
	
evenTypes.conf	
[my_evenType]	
search	=	`my_index`	sourcetype=“foo”	
	
Example	search:	
evenType=my_evenType	|	stats	count	

This	will	not	work	in	
a	distributed	
environment	by	
default.	

Get	to	Know	the	Big	Book	of	Search	

56	

www.bbosearch.com

Include	Prebuilt	Panels	

57	

Even	if	it	just	to	verify	the	thing	is	working	

Use	the	Dashboards	Example	App	

58	

hTps://splunkbase.splunk.com/app/1603/	

Use	Simple	XML	as	much	as	possible		

59	

Simple	XML	 HTML	

Use	Simple	XML	as	much	as	possible		

60	

Simple	XML	 HTML	

Less	op=ons	
and	cannot	
move	panels	

No	Export	

But,	it	is	HTML	and	you	have	
complete	control	of	the	look	and	

feel.	

Get	to	know	JavaScript	and	jQuery	

61	

The	Dashboard	Examples	app	has	
some	great	relevant	code	and	ideas.	

Bootstrap	can	add	func=onality	

62	

For	example,	easily	add	a	modal	
popup	to	a	Simple	XML	dashboard!	

Get	to	know	CSS	

63	

  All	Splunk	elements	have	an	id	
now	

  Check	out	Firefox’s	3D	view	
for	layering	

Splunk	Cloud	has	Best	Prac=ces	too	

64	

hTp://dev.splunk.com/view/app-cert/SP-CAAAE85		

Do’s	and	Don’ts	–	Packaging	Applica=ons	

65	

Do Don’t

Follow	the	guidelines	found	at	
hCp://docs.splunk.com/DocumentaGon/Splunk/latest/AdvancedDev/PackageApp	 Leave	any	hidden	files	in	the	app	such	as	Mac’s	._	files.

Include	a	screen	shot	of	your	applicaGon	in	the	correct	locaGon. 	

Let	the	user	choose	which	inputs	are	enabled	for	their	environment. Enable	all	inputs	by	default	if	not	necessary.

Use	a	build	automaGon	tool	such	as	Apache	Ant	if	necessary	to	ensure	a	clean	build/
package.

Leave	anything	in:	

$SPLUNK_HOME/etc/apps/<app>/local	directory	

$SPLUNK_HOME/etc/apps/<app>/metadata/local.meta

Ensure	the	appropriate	seLngs	are	set	in	app.conf 	

Document	your	app	with	a	README.txt	file 	

Test	your	applicaGon	on	a	clean	system 	

Do’s	and	Don’ts	–	Data	Collec=on	

66	

Do Don’t

Support	mulGple	plaOorms. Code	for	a	single	OS.

Use	scripGng	language	uGliGes	such	as	os.path.join()	and	the	special	environment	
variable	$SPLUNK_HOME	to	construct	paths	in	scripts. Hard	code	script	paths.

Write	data	to	the	“main”	index.		This	ensures	that	your	data	is	searchable	by	default. Hard	code	index	names	in	searches	if	you	must	use	a	custom	index.

Use	key=value	pairs	in	wriGng	to	log	files	(if	you	have	control	of	the	logging	output). Use	name	abbrevia=ons.

ThroCle	how	much	data	is	collected	at	one	Gme	from	an	API. Overwhelm	a	system	by	pulling	exorbitant	amounts	of	data	at	one	=me	from	an	
API.

Use	logging	and	error	trapping	in	scripts	and	inputs. 	

Do’s	and	Don’ts	-	Applica=ons	

67	

Do Don’t

Use	setup.xml	or	a	mod	input	configs	to	allow	the	end	user	to	configure	the	app Make	users	manually	enter	informa=on	such	as	API	creden=als	into	configura=on	
files.

Encrypt	user	input	passwords.	

hCp://blogs.splunk.com/2011/03/15/storing-encrypted-credenGals/	
Store	clear	text	passwords	in	.conf	files.

Parameterize	indexes	so	that	they	can	be	easily	changed Hard	code	indexes	in	your	searches

Use	the	CIM	add-on	
hCp://docs.splunk.com/DocumentaGon/CIM/latest/User/Overview	 	

Place	all	.conf	files	in	default	

$SPLUNK_HOME/etc/apps/<your_app>/default

Leave	any	content	in	

$SPLUNK_HOME/etc/apps/<your_app>/local

Set	default	permissions	in:		

$SPLUNK_HOME/etc/apps/<your_app>/metadata/default.meta

Have	a	local.meta	file	located	in:	

$SPLUNK_HOME/etc/apps/<your_app>/metadata

THANK	YOU	

