
Copyright	©	2016	Splunk	Inc.	

James	Ervin	
Principal	Engineer,	Security	and	Compliance	SoluBons	
Splunk,	Inc.	

Extending	Splunk’s	REST	API		
for	Fun	and	Profit	

Disclaimer	

2	

During	the	course	of	this	presentaBon,	we	may	make	forward	looking	statements	regarding	future	
events	or	the	expected	performance	of	the	company.	We	cauBon	you	that	such	statements	reflect	our	
current	expectaBons	and	esBmates	based	on	factors	currently	known	to	us	and	that	actual	events	or	
results	could	differ	materially.	For	important	factors	that	may	cause	actual	results	to	differ	from	those	
contained	in	our	forward-looking	statements,	please	review	our	filings	with	the	SEC.	The	forward-
looking	statements	made	in	the	this	presentaBon	are	being	made	as	of	the	Bme	and	date	of	its	live	
presentaBon.	If	reviewed	aRer	its	live	presentaBon,	this	presentaBon	may	not	contain	current	or	

accurate	informaBon.	We	do	not	assume	any	obligaBon	to	update	any	forward	looking	statements	we	
may	make.	In	addiBon,	any	informaBon	about	our	roadmap	outlines	our	general	product	direcBon	and	is	

subject	to	change	at	any	Bme	without	noBce.	It	is	for	informaBonal	purposes	only	and	shall	not,	be	
incorporated	into	any	contract	or	other	commitment.	Splunk	undertakes	no	obligaBon	either	to	develop	
the	features	or	funcBonality	described	or	to	include	any	such	feature	or	funcBonality	in	a	future	release.	

Overview	

At	the	conclusion	of	this	presentaBon,	you	should	be	able	to	discuss	
the	following:	
  What	is	a	REST	API?	
  How	does	Splunk	implement	REST	style?	
  How	can	I	extend	Splunk’s	REST	API	within	my	applicaBon?	
  Do	I	have	to	use	REST	style?	
  Why	would	I	want	to	do	any	of	this?	
	

3	

REST	Style:	DefiniBon	
REST	(RepresentaBonal	State	Transfer)	is	a	set	of	architectural	constraints	that	
make	a	web	applicaBon	“RESTful”*:	
  client-server	interacBon	over	HTTP	
  stateless	communicaBon	
  cacheable	content	
  etc.	

REST	is	a	way	to	do	IPC	(interprocess	communicaBon)	over	HTTP.	

*Cf.	Architectural	Styles	and	the	Design	of	Network-based	SoRware	Architectures;	
Fielding,	R.	h`p://www.ics.uci.edu/~fielding/pubs/dissertaBon/top.htm.	2000.		

4	

REST	Style:	PracBcal	ConsideraBons	

5	

REST	is	a	style,	rather	than	a	standard	or	a	protocol.	

There	is	no	formal	protocol	specificaBon	for	REST,	in	the	way	that	there	is	for	
XML-RPC,	SOAP,	etc.	

  In	pracBce,	this	can	be	both	liberaBng	and	frustraBng.	
  As	an	API	designer,	you	have	many	degrees	of	freedom	to	work	with.		
  As	an	API	consumer,	APIs	you	interact	with	will	differ	subtly,	even	within	
the	limited	degrees	of	freedom	offered	by	REST.	At	the	broadest	level,	note	
that	the	style	does	not	specify	a	default	format,	although	XML	and	JSON	
are	commonly	implemented.	

InteracBng	with	Splunk	REST:	direct	
Splunk’s	REST	API	can	be	interacted	with	directly	in	two	ways:	
	
Via	a	request	to	a	port:	localhost://8089	(served	by	the	splunkd	process)	

curl -k -u admin:changeme
https://127.0.0.1:8089/services/saved/searches?count=1

	

Q:	How	do	I	interact	with	Splunk	REST	on	port	8089,	when	my	browser	is	making	requests	
to	port	8000?	Doesn’t	this	violate	same-origin	policy?	

A:	Yes!	See	the	next	slide	for	the	alternaBve	access	mechanism…	

6	

InteracBng	with	Splunk	REST:	proxied	
Via	request	to	port	localhost://8000	(“splunkweb”):	

curl –k 'https://my_hostname:8000/en-US/splunkd/__raw/services/
saved/searches?output_mode=json&count=1' -H 'Cookie:
splunkweb_csrf_token_8000=11602893886132396046;
session_id_8000=b1cba29d67a369c9b2410c4885a0bca1da0ab6fd;
splunkd_8000=vjRt4ZFCbiyplxbUW2qDFe9EqTH3jCFciaRa^ul8RTQUDD_XN4WY4MT
nzue6frZBd^j1xS2MC8p4oUXWWuIoGDia4tNgSNntTAgfudmFLjkKI2PtiBK0xMnf6KS
afjg’

	

This	is	how	you	interact	with	Splunk	REST	from	your	Javascript	code.	Note	the	inclusion	of	
the	language	(en-US)	and	the	splunkd/__raw	prefix	–	this	is	important!	

7	

Proxying	REST	Calls:	History	
Prior	to	Splunk	6.2,	Splunk’s	own	REST	API	endpoints	were	whitelisted	internally	
and	were	exposed	on	port	8000	through	a	Python	proxy	(proxy.py),	which	was	
executed	as	part	of	the	Python	splunkweb	process	(a	CherryPy	web	server).	
	
This	had	two	disadvantages:	
	
1.	Python	code	execuBon	was	required	for	each	REST	call.	
2.	The	set	of	proxied	endpoints	could	not	be	extended	by	apps!	So	apps	had	to	
include	a	separate	Python	component	known	as	a	“Splunkweb	controller”	in	
order	to	proxy	their	own	endpoints.	This	led	to	extensive	duplicaBon	of	code.	

8	

Proxying	REST	Calls:	History	
In	Splunk	6.2,	the	“expose”	keyword	was	introduced	in	web.conf.	This	permits	
direct	pass-through	of	requests	to	custom	REST	endpoints	to	the	C++	splunkd	
back-end.	This	has	two	advantages:	
	
1.  Python	code	is	no	longer	involved	in	the	“hot	path”	from	client	to	server	for	

custom	REST	endpoints	as	long	as	access	is	done	via	the	/splunkd/__raw	
URI.	(Other	URIs	are	sBll	proxied	by	Python	and	may	be	slower!)	

2.  The	app	developer	can	now	expose	a	REST	endpoint	directly	via	
configuraBon,	without	wriBng	addiBonal	code.	

9	

Anatomy	of	a	REST	Call:	Pre-Splunk	6.2	

10	

Client	
Splunkd	process	

(splunkd,	port	8089)	
splunkweb	process	
(root.py,	port	8000)	

Custom	controller	script	 Custom	REST	handler	script	

1.	Client	request	

(imported)	

2.	Proxied	request	

3.	setup	request/
response	(XML)*	

4.	execute	request/	
response	(XML)*	

5.	Proxied	response	6.	Server	response	

*	=	new	Python	process	

Anatomy	of	a	REST	Call:	Post-Splunk	6.2	

11	

Client	
Splunkd	process	

(splunkd,	port	8000	and	8089)	

Custom	REST	handler	script	

1.	Client	request	(to	/splunkd/__raw)	

3.	setup	request/
response	(XML)*	

4.	execute	request/	
response	(XML)*	

6.	Server	response	

*	=	new	Python	process	

Proxying	REST	Calls:	Basic	ConfiguraBon	
In	web.conf	(Splunk	6.2	and	up):	

[expose:correlation_searches]
pattern = alerts/reviewstatuses
methods = GET,POST

Note	that	the	URL	is	what’s	actually	“exposed”	here.	You	can	even	expose	Core	endpoints	
that	aren’t	exposed	by	default.	The	above	would	correspond	to	a	URL	of:	

	
https://your_hostname:8000/en-US/splunkd/__raw/services/
alerts/reviewstatuses

12	

Proxying	REST	Calls:	Wildcarding	
[expose:correlation_searches]

pattern = alerts/correlationsearches/*

methods = GET,POST

This	exposes	a	URL	of:	
https://your_hostname:8000/en-US/splunkd/__raw/services/alerts/
correlationsearches/SEARCH_NAME_HERE

But	NOT:	

https://your_hostname:8000/en-US/splunkd/__raw/services/alerts/
correlationsearches

	
13	

Splunk	REST:	DocumentaBon	
Splunk	provides	a	(mostly)	RESTful	API.	This	API	is	served	up	on	any	running	
Splunk	instance,	usually	on	port	8089,	and	is	well-documented	here:	
	
REST	API	Reference	Manual	–	URI	Quick	Reference	
h`p://docs.splunk.com/DocumentaBon/Splunk/latest/RESTREF/RESTlist	
	
REST	API	User	Manual	
h`p://docs.splunk.com/DocumentaBon/Splunk/latest/RESTUM/RESTusing	

	
restmap.conf	
h`p://docs.splunk.com/DocumentaBon/Splunk/latest/Admin/Restmapconf	
	
	

	
14	

Extending	the	API:	Why?	
QuesBon:	Why	would	you	want	to	extend	the	REST	API?	

Answer(s):	Several	reasons,	most	of	which	are	just	general	principles	of	good	soRware	design.	

	

1.  EncapsulaBon	

2.  ComputaBon	

3.  FuncBonality	
4.  AbstracBon	

5.  Performance	

6.  App	Management	

7.  Cloud	CompaBbility	

	

	

	

	

15	

Extending	the	API:	EncapsulaBon	

16	

In	the	Enterprise	Security	app,	we	frequently	encounter	product	requirements	that	require	
construcBon	of	a	new	concept.	
	
Example:	
A	“correlaBon	search”	consists	of	up	to	3	configuraBon	objects:	
  A	savedsearches.conf	entry	
  Metadata	about	the	search’s	related	regulatory	compliance	sewngs	in	
“governance.conf”	

  Metadata	about	the	search’s	workflow	in	“correlaBonsearches.conf”	

EncapsulaBon	behind	an	API	permits	manipulaBon	of	these	enBBes	as	a	unit	or	“single	
concept”.*	
*	Note:	Splunk	does	NOT	provide	transacBonal	semanBcs	on	configuraBon	files.	

Extending	the	API:	ComputaBon	
Certain	types	of	computaBon	might	be	unsafe	to	perform	solely	in	the	browser.	

	

Usually,	this	means	argument	validaBon.	

	

Example:	

	
If	you	create	a	custom	configuraBon	file	that	has	specialized	validaBon	requirements,	a	custom	REST	
handler	to	provide	server-side	validaBon	may	be	required.		

17	

Extending	the	API:	FuncBonality	
The	Core	Splunk	REST	API	may	not	provide	a	certain	feature	you	need.	

	

Example:	

	

In	an	earlier	version	of	Enterprise	Security,	in	order	to	propagate	some	configuraBon	changes	across	
a	Search	Head	Cluster	(SHC),	we	had	to	write	a	REST	handler	that	would	“fan	out”	modificaBons	
across	a	cluster	so	that	edits	made	on	one	search	head	would	be	visible	on	the	other	search	heads.	

	

These	cases	are	generally	rare.	Internally,	we	generally	don’t	encourage	development	of	significant	
“plumbing”	of	this	sort	at	the	app	level,	when	it	should	really	be	done	in	the	Core	splunkd	process.	

18	

Extending	the	API:	AbstracBon	
You	may	need	to	future-proof	your	app	by	providing	a	layer	of	abstracBon,	so	that	future	
modificaBons	to	the	app	can	be	made	without	requiring	significant	front-end	or	user	experience	
work.	

	

Example:	

	

ES	contains	a	small	API	that	provides	for	storage	of	small	files	in	the	KV	store	as	encoded	strings.	By	
wriBng	an	API	for	this,	instead	of	forcing	the	front-end	to	write	to	KV	store	APIs,	we	retain	the	
flexibility	to	swap	out	the	storage	layer	at	any	Bme	without	requiring	significant	UI	work.	

	

19	

Extending	the	API:	Performance	
OperaBons	that	would	generate	many	round-trips	to	the	server,	oRen	benefit	from	being	wrapped	in	
a	REST	API.	

	

Example:	

	

ES	contains	a	feature	known	as	the	“Notable	Event	Framework”	which	overlays	a	minimal	BckeBng	
workflow	system	on	top	of	indexed	Splunk	events.	EdiBng	events	via	this	framework	usually	requires	
issuing	mulBple	calls	to	determine	the	exisBng	status	and	ownership	of	an	event,	and	then	validaBng	
that	the	current	user	has	permission	to	change	that	status	(for	instance:	not	all	analysts	may	be	
allowed	to	“close”	incidents).	

Doing	the	status	check	completely	in	the	browser	would	generate	possibly	thousands	of	calls	to	and	
from	the	server,	which	would	be	prohibiBvely	expensive.	

20	

Extending	the	API:	App	Management	
1.  Using	the	“triggers”	stanza	in	app.conf,	you	have	the	ability	to	force	REST	calls	to	your	handler	to	

occur	(or	not	occur)	upon	app	state	changes	(install,	update,	enable,	disable).	

2.  Splunk’s	“layered	conf”	system	is	a	very	simple	data	persistence	mechanism.	You	can	use	this	
when	you	need	to	store	a	bit	of	data	and	don’t	want	to	be	restricted	to	indexing	it	and	only	being	
able	to	get	at	it	via	search.	

	

Example:	
	

In	the	Enterprise	Security	app,	we	uBlize	this	to	force	the	customer	to	go	through	the	setup	process	again	following	
an	app	upgrade,	so	that	they	receive	the	newest	configuraBons.	

	
[triggers]
reload.ess_setup = access_endpoints /admin/ess_configured

	

	
21	

Extending	the	API:	Cloud	CompaBbility	
In	Splunk	Cloud,	you	can’t	make	the	same	assumpBons	about	your	storage	or	local	environment.	

	

Nor	does	the	customer	have	shell	access	to	the	server!		

	

This	means	that	any	operaBon	you	used	to	do	by	hand	via	direct	edits	to	configuraBon	files,	or	via	
other	direct	filesystem	access,	is	be`er	done	by	exposing	the	funcBon	in	a	REST	API.	

	

This	is	probably	the	most	important	reason	to	begin	uUlizing	custom	REST	handlers	in	your	app.	

	

Cf.	Steve	Yegge’s	infamous	google+	rant:	h`ps://plus.google.com/+RipRowan/posts/eVeouesvaVX	on	
the	importance	of	interfaces	as	they	pertain	to	plazorm	development.	

	

	

	

22	

REST	APIs	
	

	

	

	

How	do	I	write	these	things?	

23	

REST	Interfaces	
You	may	be	surprised	to	discover	that	Splunk	offers	4	disBnct	methods	for	wriBng	REST	APIs,	each	
with	unique	behavior.	They	are	shown	below	on	two	axes:	the	interface	that	the	API	is	wri`en	in,	and	
the	life*me	of	the	process	that	executes	the	REST	handler	code.	

	

	

	

	

	

	

	

	

24	

Process	LifeUme	

non-persistent	 persistent	

	
Interface	

EAI	(admin_external)	 All	versions	 6.4	and	up	

Non-EAI	(script)	 All	versions	 6.4	and	up	

REST	Interfaces:	EAI	
EAI	–	Extensible	AdministraUon	Interface	
Designed	to	facilitate	more	rapid	development	of	REST	interfaces	on	the	C++	backend.	UBlizing	this	
interface	provides	some	addiBonal	services	such	as:	

•  AutomaBc	paginaBon	

•  AutomaBc	output	formawng	(XML,	JSON)	

•  Access	control	
•  Filtering	

•  Limited	argument	validaBon	via	Splunk	“eval”	syntax		

EAI	is	typically	associated	with	management	of	custom	Splunk	configuraBon	files.	

	

	

	

	

25	

REST	Interfaces:	EAI	(example)	
Custom	EAI	handlers	are	indicated	by	the	presence	of	the	“admin_external”	
stanza	in	restmap.conf.	The	highlighted	parameters	are	only	valid	with	this	
sewng.	

	
[admin_external:correlationsearches]
handlertype = python
handlerfile = correlationsearches_rest_handler.py
handleractions = list,edit,create,remove,_reload

	

**	Only	Python	scripts	are	supported.	

	

	 26	

REST	Interfaces:	Mapping	EAI	Handlers	
[admin:alerts_threaBntel]	

match=/alerts 	 	 		

members=correlaUonsearches	

	

##	CorrelaBon	Searches	Handler	

[admin_external:correlaUonsearches]	

handlertype	=	python	

handlerfile	=	correlaBonsearches_rest_handler.py	

handleracBons	=	list,edit,create,remove,_reload	

	

[eai:conf-correlaBonsearches]	

capability.write	=	edit_correlaBonsearches	

	

27	

Maps	the	handler	“correlaBonsearches”	to	the	URI		
“services/alerts/correlaBonsearches”	

Assign	role-based	access	controls	on	the	handler	

Endpoint-specific	sewngs	

REST	Interfaces:	script	
A	“raw”	interface	for	wriBng	REST	interfaces.	

	

Services	such	as	paginaBon,	support	for	mulBple	output	formats,	etc.	are	the	responsibility	of	the	
developer.	Conformance	to	REST	style	is	also	the	responsibility	of	the	developer.	

	

Using	this	interface,	you	have	absolute	freedom.	

	

	

	

	

	

28	

REST	Interfaces:	script	(example)	
A	“script”	handler	is	indicated	by	the	presence	of	the	“script”	sewng	in	restmap.conf.	Highlighted	
a`ributes	are	only	valid	with	this	type:	

	
[script:notable_update]
match = /notable_update
scripttype = python
script = notable_update_rest_handler.py
handler = notable_update_rest_handler.NotableEventUpdate
requireAuthentication = true
capability=edit_notable_events
output_modes=json

	

29	

REST	Interfaces:	Mapping	Script	Handlers	
######	REST	notable	update	######	

[script:notable_update]	

match	=	/notable_update	

script	=	notable_update_rest_handler.py	

handler=notable_update_rest_handler.NotableEventUpdate	

requireAuthenBcaBon	=	true	

capability=edit_notable_events	

output_modes=json	

30	

Maps	the	handler	to	the	URI	
	“services/notable_update”	

Assign	role-based	access	controls	on	the	handler	

The	class	that	serves	requests	

REST	Interfaces:	Segue:	What	is	“Persistence?”	
Before	we	can	talk	about	how	to	write	handlers,	we	need	to	understand	the	other	axis	on	our	chart:	
what	is	“persistence”?	

	

Recall	the	execuBon	model	for	a	Splunk	REST	call	on	the	previous	diagram:	

	
1.  The	splunkd	process	receives	request	on	port	8089.	

2.  This	python	script	is	invoked:	$SPLUNK_HOME/bin/python	runScript.py	<setup|execute>	

3.  This	script	loads	the	REST	handler	using	Python’s	execfile()	method,	handing	off	STDIN	and	STDOUT	as	needed.	

	

It	does	this	twice	for	every	REST	call:	once	to	setup	the	REST	handler,	once	to	execute	it.	

That’s	two	invocaBons	of	Python	for	every	REST	call.	

31	

REST	Interfaces:	Segue:	What	is	“Persistence?”	
“Persistent”	mode	means	that	the	splunkd	process	will	only	execute	one	process	per	REST	call.	
AddiBonally,	this	process	will	persist	unBl	it	is	idle	for	a	period	of	Bme	(60	seconds),	at	which	point	it	
will	be	reaped	by	the	primary	splunkd	process	(no	developer	acBon	required).	During	the	non-idle	
interval,	it	can	service	mulBple	requests.	

	

This	is	the	execuBon	model	for	a	Splunk	persistent	REST	call:	

	
1.  The	splunkd	process	receives	request	on	port	8089.	

2.  The	python	script	is	invoked	directly:	
	
$SPLUNK_HOME/bin/python	<YOUR_SCRIPT	HERE>	persistent	

(subsequent	requests	get	passed	to	the	same	process	directly)	

32	

REST	Interfaces:	Handler	Base	Classes	
Python	classes	are	distributed	with	Splunk	that	you	can	inherit	from	to	write	your	own	handlers:	

33	

Process	LifeUme	

non-persistent	 persistent	

	
Interface	

EAI	(admin_external)	 MConfigHandler	 MConfigHandler	

Non-EAI	(script)	 BaseRestHandler	 PersistentServerConnecBonApplicaBon	

REST	Interfaces:	Handler	Base	Classes	
Python	classes	are	distributed	with	Splunk	that	you	can	inherit	from	to	write	your	own	handlers:	

34	

Process	LifeUme	

non-persistent	 persistent	

	
Interface	

EAI	(admin_external)	 MConfigHandler	 MConfigHandler	

Non-EAI	(script)	 BaseRestHandler	 PersistentServerConnecBonApplicaBon	

REST	Interfaces:	Adding	EAI	Mode	Persistence	
Q:	What	did	we	noUce	about	the	preceding	slide?	

A:	The	classes	providing	EAI	support	are	the	same!	

That’s	correct:	enabling	persistence	on	a	custom	handler	wri`en	using	the	EAI	specificaBon	is	simply	
a	configura8on	change.	To	add	persistence	to	an	EAI	handler,	simply	add	this	to	your	restmap.conf:	

	

handlerpersistentmode = true

	

However…	this	is	not	to	say	that	your	handler	is	guaranteed	to	work	properly.	Why?	If	you	were	
doing	work	in	the	__init__()	method	of	your	handler,	and	were	depending	on	that	work	being	done	
to	properly	serve	requests,	when	in	persistent	mode	this	work	will	NOT	be	redone	–	because	
__init__()	is	never	called	again!	

35	

REST	Interfaces:	Adding	Script	Mode	Persistence	
Enabling	persistence	on	a	“script”	custom	REST	handler	requires:	

	

1.	Add	this	to	your	restmap.conf:	

	

scripttype = persist

	
2.	Rewrite	your	handler	to	use	the	new	protocol	specificaBon.	This	is	the	hard	part.	

	

	

Gold	star	quesBon:	Persistent	scripts	execute	only	once.	What	does	this	imply	for	discoverability?	

36	

REST	Interfaces:	Classes	
EAI,	persistent	and	non-persistent:	MConfigHandler	

	
$SPLUNK_HOME/lib/python2.7/site-packages/splunk/admin.py

	

Script,	non-persistent	(two	compeUng	implementaUons):	BaseRestHandler	

	
$SPLUNK_HOME/lib/python2.7/site-packages/splunk/rest/__init__.py
$SPLUNK_HOME/etc/system/bin/sc_rest.py	

	

Script,	persistent:	PersistentServerConnecUonApplicaUon	

	
$SPLUNK_HOME/lib/python2.7/site-packages/splunk/persistconn/application.py

	

		
37	

REST	Interfaces:	RecommendaBons	
The	non-persistent	interfaces	should	be	avoided.	

38	

Process	LifeUme	

non-persistent	 persistent	

	
Interface	

EAI	(admin_external)	 MConfigHandler	 MConfigHandler	

Non-EAI	(script)	 BaseRestHandler	 PersistentServerConnecBonApplicaBon	

REST	Interfaces:	RecommendaBons	
1.  Avoid	versions	of	Splunk	prior	to	6.2	so	that	you	can	make	use	of	the	“expose”	web.conf	

direcBve.	

2.  Non-persistent	interfaces	should	be	avoided	unless	your	app	requires	compaBbility	with	pre-
Splunk	6.4	versions.	

	

Reasons	for	recommendaUon	#2:	

•  Persistent	interfaces	offer	all	the	flexibility	of	the	non-persistent	interfaces.	

•  Performance	of	persistent	REST	handlers	is	vastly	improved.	

•  “script”	handlers	using	non-persistent	mode	can	actually	conflict	with	REST	scripts	running	in	
unrelated	apps.	

39	

REST	Interfaces:	RecommendaBons	
AND…	

	

•  Persistent	REST	handlers	can	now	be	wri`en	in	compiled	languages	using	the	“driver”	direcBve:	

	
[script:my_handler_written_in_go]
match = /test
driver = echo
driver.arg.1 = <whatever>
script = echo
scripttype=persist
requireAuthentication = true
output_modes=json

40	

REST	Interfaces:	Sample	Code	
Sample	code	for	simplisBc	REST	handlers	using	all	the	interfaces	detailed	in	this	presentaBon	
(including	the	ill-advised	ones)	is	available	at:	

	
h`ps://github.com/jrervin/splunk-rest-examples	

	

	

41	

REST	Interfaces:	Demo	

42	

THANK	YOU	

