
Copyright	©	2016	Splunk Inc.

Randyl	Longmire
Senior	Operations	Engineer,	Surescripts	LLC

Finding	Straw	in	a	Hay	Field
The	Art	of	DevOps	Log	Farming



Disclaimer

2

During	the	course	of	this	presentation,	we	may	make	forward	looking	statements	regarding	future	
events	or	the	expected	performance	of	the	company.	We	caution	you	that	such	statements	reflect	our	
current	expectations	and	estimates	based	on	factors	currently	known	to	us	and	that	actual	events	or	
results	could	differ	materially.	For	important	factors	that	may	cause	actual	results	to	differ	from	those	

contained	in	our	forward-looking	statements,	please	review	our	filings	with	the	SEC.	The	forward-looking	
statements	made	in	the	this	presentation	are	being	made	as	of	the	time	and	date	of	its	live	presentation.	
If	reviewed	after	its	live	presentation,	this	presentation	may	not	contain	current	or	accurate	information.	
We	do	not	assume	any	obligation	to	update	any	forward	looking	statements	we	may	make.	In	addition,	
any	information	about	our	roadmap	outlines	our	general	product	direction	and	is	subject	to	change	at	
any	time	without	notice.	It	is	for	informational	purposes	only	and	shall	not,	be	incorporated	into	any	
contract	or	other	commitment.	Splunk	undertakes	no	obligation	either	to	develop	the	features	or	

functionality	described	or	to	include	any	such	feature	or	functionality	in	a	future	release.



Agenda

3

Introductions
Where	in	the	DevOps	cycle	this	session	is	focused
Turning	the	‘hay	field’	of	log	entries	into	a	valuable	resource	using	
Splunk	software
Queries,	transactions,	alerts,	and	automation
Summary
What’s	next?

What	are	we	doing	here?



Who	is	Surescripts?
Surescripts	is	How	Healthcare	Gets	Connected.

A	nationwide	health	information	network	securely	connecting	doctors’	offices,	hospitals,	
pharmacists,	and	health	plans	through	an	integrated	and	technology	neutral	platform.

• We	partner	with	more	than	700	EHR	applications	used	by	over	900,000	healthcare	professionals	
and	more	than	1,000	hospitals,	impacting	more	than	270	million	insured	lives.	

• We	process	more	than	6	billion	transactions	each	year,	including	nearly	700	million	medication	
histories,	more	than	1	billion	e-prescriptions	and	nearly	10	million	clinical	messages.



Who	is	Randyl	Longmire?

• Senior	Operations	Engineer	(10	yrs.)	at	Surescripts
• Born	and	raised	in	the	Northwest	United	States
• 14	years	in	Healthcare	Technology
• 20+	years	in	Computer	Support,	Systems	and	Operations

The	‘Problem	Resolver’



The	Scope	of	this	Session

6

Server	and	software	deployments
Monitoring	of	server	and	application	health
Troubleshooting	and	problem	resolution
– System	/	OS	Errors
– Application	and	Database	Errors
– HTTP/SMTP	Communication	Failures

Which	elements	of	the	DevOps	cycle	are	we	focusing	on?



7

We	are	alerted	to	an	HTTP	500	error	on	a	single	site
Using	a	text	editor	or	log	parser,	we	manually	search	for	anything	
that	looks	like	an	error	around	the	time	that	it	was	reported
We	then	manually	correlate	this	error	with	logs	from	related	systems	
around	the	same	timestamp

Scenario	1:	Error	Troubleshooting
Troubleshooting	the	old	way



8

The	anatomy	of	the	haystack



9

Modern	methods	of	finding	a	needle	in	the	haystack



10

Typical	method	of	finding	a	needle	in	the	haystack



11

From	a	haystack	to	a	hay	field

Surescripts	Hosted	Web	Apps
• 1800	servers	(haystacks)
• 68	million	log	entries	daily



Finding	Straw	in	a	Hay	Field	With	Splunk Software

12

Query	scope	can	range	from	very	focused	to	very	general

Query	to	find	the	string	“TimeoutException”	in	a	single	log	type	on	a	single	server:

Query	to	find	the	string	“TimeoutException”	in	any	log	on	any	server	within	the	‘webApps’	index:



Using	Timechart to	Graph	the	History

13

Query	to	find	the	string	“TimeoutException”	and	visualize	the	frequency	through	time:

Using	the	same	query,	we	can	now	look	into	the	past



Scenario	2:	Alerts

14

Now	that	we	have	the	power	of	Splunk queries	available,	we	can	use	
them	to	create	proactive	alerts.
When	the	same	Timeout	Exception	error	occurs,	we	can	now	be	
alerted	to	it	immediately	as	well	as	trigger	other	actions.

Using	Alerts	for	proactive	monitoring



15

Using	Alerts	for	Error	Detection

Step	1:	Define	the	Query



16

Using	Alerts	for	Error	Detection

Step	2:	Set	the	Alert	Type	and	Trigger	Condition
Scheduled	or	Real-Time
Trigger	based	on	result	counts



17

Using	Alerts	for	Error	Detection

Step	3:	Specify	Trigger	Actions
Log	events
Send	an	Email
Run	a	script
Open	a	ServiceNow incident
POST	to	a	webhook URL
etc



Scenario	3	–Automation

18

The	Problem:
– Partner	application	has	version	dependencies	with	our	application
– When	one	side	upgrades,	the	connectivity	is	broken	until	the	other	side	

upgrades
Solution	before	Splunk
– Support	ticket	is	opened	requesting	an	upgrade	on	or	after	a	certain	date
– Connectivity	would	be	broken	for	anywhere	from	hours	to	days
Solution	with	Splunk
– PowerShell	script	runs	query	against	Splunk	API	every	30	minutes
– When	an	unsupported	version	error	is	detected	in	the	logs	from	any	of	the	1800	

servers,	the	upgrade	for	that	server	is	queued	automatically

Using	PowerShell	with	the	Splunk	REST	API



19

#region Variables
# Splunk Server Address

[string]$SplunkServer = "https://splunk.example.com:8089"
# Splunk API Username

[string]$SplunkAPIUser = "splunkAPI"
# Limit the number of results

[int]$resultLimit = 1000
# Splunk Search String

[string]$SearchString = "search index=""webapps"" source=""*webApp.log"" 
""unsupported ver*"" | stats count as ErrorCount by host | head $resultLimit"
# Value for time frame from now to search

[string]$incrementValue = "-5m" # -5m,-5h,-5d, etc
# Seconds to wait for the job to complete

[int]$timeLimit = 60  
# Generate hashtable of body contents used to perform the search

$RestBody = @{
search=$SearchString
output_mode="json"
earliest_time="$incrementValue"}

#endregion Variables

Step	0:	Declare	the	search	query	and	parameters
Using	the	REST	API	with	PowerShell



20

# Get a session Key from Splunk API
#region GetSessionKey

$object = @{
"username" = $SplunkAPIUser
"password" = $(GetSecret $SplunkAPIUser)
}
try {

$token = Invoke-RestMethod -Uri "$SplunkServer/services/auth/login/" -Body
$object -Method Post
}
catch {

log "Error getting Splunk login token. $($_.Exception)"
exit

}
$header = @{
"Authorization" = "Splunk $($token.response.sessionKey)"
}

#endregion GetSessionKey

Step	1:	Get	an	API	Session	Key
Using	the	REST	API	with	PowerShell



21

# Submit the search job
#region SubmitJob

try { 
$JobID = (Invoke-RestMethod -Method Post -Uri

"$SplunkServer/services/search/jobs/" -Headers $header -Body
$restBody -ErrorAction Stop).sid
}
catch {

log "Error submitting Query to Splunk API. Please check your 
search parameters and try again."

log "Error Detail: $_"
exit

}
#endRegion SubmitJob

Step	2:	Submit	the	search	job	
Using	the	REST	API	with	PowerShell



22

$JobStatus = Invoke-RestMethod -Method Post -Uri "$SplunkServer/services/search/jobs/$jobID"
-Headers $header -ErrorAction Stop
# Wait for job to complete
While (((($JobStatus.entry.content.dict.key | where {$_.name -eq "dispatchState"})."#text") 
-ne "DONE") -and (!($timeOut))){

If (((New-TimeSpan $startTime (Get-Date))).totalSeconds -gt $timeLimit) {
log "Timeout exceeded!"
# Delete the job and exit
try {

$JobDelete = Invoke-RestMethod -Method DELETE -Uri
"$SplunkServer/services/search/jobs/$jobID" -Headers $header -ErrorAction Stop

exit
}
catch {

exit
}

}
sleep -Seconds 1
$JobStatus = Invoke-RestMethod -Method Post -Uri

"$SplunkServer/services/search/jobs/$jobID" -Headers $header -ErrorAction Stop
}

Step	3:	Wait	for	the	job	to	complete
Using	the	REST	API	with	PowerShell



23

# Get search results from the job
######################

try{
$JobResults = Invoke-RestMethod -Method Get -Uri

"$SplunkServer/services/search/jobs/$jobID/results?output_mode=json&count=0" -Headers $header -
ErrorAction Stop

log "$($JobResults.results.Count) Search Results received"
}
catch {

log "Could not obtain search results from Splunk API. $_"
}

# Delete the job
try {

$JobDelete = Invoke-RestMethod -Method DELETE -Uri
"$SplunkServer/services/search/jobs/$jobID" -Headers $header -ErrorAction Stop

log "Job Deleted successfully"
}
catch {

log "Could not delete Splunk job ($JobID). $_"
}

}

Step	4:	Get	the	results
Using	the	REST	API	with	PowerShell



24

# Process the search results
# We could also limit this list by only returning results with an 
ErrorCount over a specified number
[array]$results = $JobResults.results.host

ForEach($hostname in $results) {
# Do some automation based on the results, in our case queue the 

server for an upgrade.
}

Step	5:	Process	the	results
Using	the	REST	API	with	PowerShell



Bonus	Scenario	– Log	Readability

25

Using	transactions	to	create	readable	SMTP	logs

The	Problem:
– Customer	reports	an	SMTP	message	was	sent	but	never	delivered

Solution	before	Splunk
– Support	ticket	is	opened	reporting	SMTP	details	for	missing	message
– Manually	searching	and	parsing	SMTP	logs	for	hours,	if	they	still	exist

Solution	with	Splunk
– Use	a	‘transaction’	query	to	display	all	communication	threads	from	sender’s	IP



Reading	SMTP	communication	before	Splunk

26

Before	Splunk:



Converting	SMTP	logs	into	readable	transactions

27

index=webApps sourcetype=iis c_ip="74.125.69.27"	|	transaction	c_ip startswith=EHLO	
endswith=QUIT	maxspan=4s

After	Splunk:



Summary

28

Before	Splunk
– Log	files	were	more	of	a	management	task	than	a	useful	tool
– The	manual	process	of	log	parsing	was	tedious	and	time-consuming

With	Splunk
– Log	files	are	an	empowering	resource	across	all	aspects	of	DevOps
– Queries	can	target	a	broad	scope	or	laser	focus	for	error	identification	and	

troubleshooting
– Alerts	provide	pro-active	monitoring	and	automation
– Timecharts enable	graphing	for	dashboards	and	historical	data
– The	API	opens	the	power	of	Splunk to	countless	other	applications



What’s	Next?

29

Be	Creative
– Splunk’s applications	expand	with	your	imagination

Be	Collaborative
– Use	the	Splunk community	tools

Be	Adventurous
– Discover	new	commands	and	methods	and	ways	they	can	be	applied

Be	Inspired
– Adapt	and	transform	existing	solutions	into	new	and	exciting	tools



THANK	YOU


