
Copyright	©	2016	Splunk	Inc.

Dhruva	Kumar	Bhagi
dbhagi@splunk.com
Sr.	software	engineer
Splunk	Inc.

Indexer	clustering	basics,	internals	&	
general	debugging

Disclaimer

2

During	the	course	of	this	presentation,	we	may	make	forward	looking	statements	regarding	future	
events	or	the	expected	performance	of	the	company.	We	caution	you	that	such	statements	reflect	our	
current	expectations	and	estimates	based	on	factors	currently	known	to	us	and	that	actual	events	or	
results	could	differ	materially.	For	important	factors	that	may	cause	actual	results	to	differ	from	those	

contained	in	our	forward-looking	statements,	please	review	our	filings	with	the	SEC.	The	forward-looking	
statements	made	in	the	this	presentation	are	being	made	as	of	the	time	and	date	of	its	live	presentation.	
If	reviewed	after	its	live	presentation,	this	presentation	may	not	contain	current	or	accurate	information.	
We	do	not	assume	any	obligation	to	update	any	forward	looking	statements	we	may	make.	In	addition,	
any	information	about	our	roadmap	outlines	our	general	product	direction	and	is	subject	to	change	at	
any	time	without	notice.	It	is	for	informational	purposes	only	and	shall	not,	be	incorporated	into	any	
contract	or	other	commitment.	Splunk	undertakes	no	obligation	either	to	develop	the	features	or	

functionality	described	or	to	include	any	such	feature	or	functionality	in	a	future	release.

Indexer	cluster	topology

3

MasterSearch	head

FORWARDERS	

Indexer Indexer Indexer
For	Replication

For	generation	info

For	Search

Forwarding	data	to	indexers

Master-slave	communication

For	replication

Searchhead-idx

Why	indexer	clustering

• Data	availability:	Your	system	can	tolerate	downed	indexers	without	loosing	data	or	
access	to	the	data

• Disaster	recovery:	With	multisite	clustering,	your	system	can	tolerate	the	failure	of	an	
entire	data	center

• Search	affinity:	With	multisite	clustering,	Search	heads	can	access	the	data	through	
their	local	sites	thereby	improving	search	performance	by	lowering	network	latency

• Other	advantages:	uniform	configuration	across	indexers,	ease	of	management	&	
monitoring	of	the	indexers

4

Parts	of	the	cluster
• Cluster	Master
• Manages	the	cluster	activities
• Maintains	an	in-memory	state	of	all	the	peers	&	their	corresponding	buckets,	configs
• Orchestrates	remedial	activities	during	peer	failures
• Tells	search	heads	where	to	search

• Cluster	Peer	(Indexer)
• Receive	and	index	incoming	data	(typically	from	forwarders)
• Replicate	data	to	other	peers	for	data	availability
• Respond	to	the	incoming	searches	by	providing	search	results
• Update	cluster	master	on	any	state	change	(peer,	buckets,	configs	etc.)

• Search	head
• Runs	&	coordinates	searches	&	aggregates	the	search	results	coming	from	indexers
• Periodically	interacts	with	cluster	master	for	generation	updates

5

Communication	amongst	members

6

Cluster	master	&	peers	communicate	over	REST	endpoints.
Few	Examples:
• Peers->Master:

• /services/cluster/master/peers
• Add	peer	to	cluster
• Heartbeat	to	master

• /services/cluster/master/buckets
• Notify	master	on	bucket	creation	&	removal
• Notify	master	on	bucket	state	changes

• Master->Peers:
• /services/cluster/slave/buckets

• Change	primaries
• Become	searchable/unsearchable

• Search	head->Master:
• cluster/master/generation	- To	get	the	latest	generation	information

event=addPeer

• Peer	joins	the	cluster	by	executing	an	event	called	‘addPeer’	which	is	
a	REST	call	to	CM	(services/cluster/master/peers)	

• This	happens	on	peer	startup.
• On	AddPeer	request,	peer	reports	its	entire	state	to	cluster	master.
• reports	all	its	buckets	and	corresponding	states
• active_bundle_id,	latest_bundle_id,	mgmt_port,	GUID,	

replication_port	
• add_type	=	Initial-Add	|ReAdd

• Master	stores	entire	peer’s	state	in	its	memory

7

event=addPeer

• Slave	logs:	08-02-2016	15:54:06.098	-0700	INFO		CMSlave	- event=addPeer
status=success	request:	AddPeerRequest:	{	}

• Up	on	successful	addPeer,	master	also	logs	to	its	splunkd.log
• 08-02-2016	15:54:06.094	-0700	INFO		CMMaster	- event=addPeer

guid=F1B6E8F0-002A-4947-83CA-0A5BC56E0A53	peer_name=slave1	
AddPeerRequest:	{}	bucket_count=4

• On	addPeer	success,	master	commits	a	new	generation.
• CMMaster	- committing	gen=1	numpeers=1	requesterReason=addPeerSuccess	

guid=F1B6E8F0-002A-4947-83CA-0A5BC56E0A53	lastCompleteGenId=0
• When	enough	replication_factor	#	of	peers	join	the	cluster,	cluster	
transitions	into	indexing	ready	state.

8

Heartbeats

Heart	beating	is	a	way	cluster	master	&	peer	tell	each	other	that	
they	are	up	and	running
Heartbeat	happens	over	REST	endpoint	(cluster/master/peers)
Once	peer	registers	to	master,	it	sends	out	heartbeat	request	to	
master	once	in	every	heartbeat_period	seconds	(defaults	to	1)
Master	responds	back	to	the	heartbeat	request	indicating	its	up
Master	and	peer	exchange	some	basic	information	(like	bundleId’s,	
peer	states	etc.)	over	the	heartbeats.

9

Heartbeats
More	the	#	of	peers,	more	the	heartbeat	requests	master	receives	and	
respond	to
For	relatively	large	clusters	(with	>50	peers	or	200k+	buckets),	its	
recommended	to	adjust	heartbeat_period value	to	5-30.
Master	marks	a	peer	as	“Down”	if	it	hasn’t	received	heartbeat	for	
heartbeat_timeout period	(defaults	to	60	seconds)
For	relatively	large	clusters,	its	recommended	to	adjust	this	value	to	20x-
60x	of	heartbeat_period
FYI:	Its	recommended	to	also	adjust	restart_timeout as	the	peer	load	(like	
bucket/summary/job	count)	goes	up

10

Copyright	©	2016	Splunk	Inc.

````Config	management	in	
the	cluster



Bundle is	basically	a	set	of	updated	configuration	files	(mostly	
indexes.conf,	props.conf,	transforms.conf	etc)	spread	over	different	
apps	distributed	to	cluster	peers	from	cluster	master
Its	just	the	content	under	$SPLUNK_HOME/	etc	/master_apps
In	order	to	push	a	new	bundle,	update	your	master_apps	content	&	
run ‘splunk	apply	cluster-bundle	[--skip-validation]’

Cluster	bundles



Bundle	push	is	a	multi	step	process
• Creation
• Happens	at	cluster	master
• Involves	creating	the	bundle	tar	ball	&	calculating	the	checksum
• Master	does	minimal	config	validation	while	creating	the	bundle
• Master	updates	its	latest_bundle_id to	the	new	bundle	checksum

• Validation
• Happens	at	the	cluster	peers
• Peers	detect	new	latest_bundle_id from	master	&	performs	validation
• Validation	involves	downloading	the	bundle	&	actually	validating	the	configs
• Peer	reports	the	outcome	of	the	validation	to	cluster	master
• Master	reverts	its	latest_bundle_id to	old	bundle	if	any	peer	reports	error

Cluster	bundles



• Reload	(or)	Restart
• Depending	on	the	contents	of	the	bundle,	cluster	peers	determine	if	they	can	
accept	the	new	bundle	without	a	restart	(by	just	reloading)
• Peer	reports	that	bundle	needs	restart,	CM	then	issues	rolling-restart	of	cluster	
peers	for	the	new	bundle	to	take	into	effect.

FYI:	Its	not	recommended	to	change	cluster	peer	configurations	(like	
indexes,	props,	transforms	etc.)	locally	at	the	peers.	All	the	configs	should	
come	from	cluster	master.	This	guarantees	uniformity	of	the	configuration	
among	cluster	members.

Cluster	bundles



Copyright	©	2016	Splunk	Inc.

```` BUCKETS


Buckets are	created	on	the	indexer	(cluster	peer).	
Flow	of	bucket	creation:
• Indexer	receives	raw-data	and	transforms	them	into	events
• Groups	the	events	into	a	bucket	&	generates	index	for	each	keyword
• Groups	buckets	into	a	logical/physical	partition	called	index									
• Typical	data	flow	hierarchy:

16

Rawdata Events Slice Bucket

Index

broken	into are		grouped	into are	written	to

are	grouped	as

B1

B2

Bn

Buckets

Disk

Buckets

Bucket	is	usually	a	unit	of	data	the	cluster	is	aware	of
For	data	availability,	each	indexer	replicates	its	buckets
Replication	is	of	two	types:
– Streaming	replication	(for	hot	buckets)
– Non-streaming	replication	(for	warm|cold	buckets)
Buckets	can	be	searchable or	unsearchable
Among	multiple	searchable	copies,	master	picks	one	copy	as	”primary”
Peers	only	serve	data	from	primary buckets	to	the	search
Cluster	peer	notifies	cluster	master	upon	every	state	change	of	its	bucket(s)	
so	that	master	stays	up	to	date

17

Bucket

Rawdata

Search	files

Buckets

• More	buckets	means	more	work
• Since	bucket	is	the	unit	of	the	data	that	cluster	handles,	Most	of	the	work/communication	

in	the	cluster	is	related	to	buckets
• Some	examples	of	bucket	related	work:
• Bucket	creation
• Bucket	state	changes
• Hot	->	warm,	Warm	->	cold,	Cold	->	frozen
• Searchable	->	unsearchable,	Unsearchable	->	searchable
• Changing	primary	mask	(needs	generation	commit)

• Bucket	truncation
• Bucket	deletion
• Handling	replications
• Handling	success|failures|errors	of	various	bucket	transitions	&	transactions

18

Buckets

Reduced	disk	space	for	aged	buckets

Searchable buckets	occupy	more	disk	space	due	the	substantial	storage	
requirements	of	tsidx/index files
Infrequently	searched	old/aged	searchable	buckets	size	can	be	greatly	
reduced	with	tsidx	reduction	at	the	cost	of	significant	search	performance	
Reduced	tsidx	files	are	one-third	to	two-third	smaller	than	the	original	ones
Each	indexer	reduces	its	searchable	copies	on	its	own
By	default	tsidx	reduction	is	disabled	(enableTsidxReduction=false)
NOTE:	tstats	&	typeahead	commands	won’t	work	on	reduced	buckets

19

Copyright	©	2016	Splunk	Inc.

````Master	service	&	fixups



• Cluster	master	executes	its	service() call	once	in	every	few	seconds.
• Master	schedules	all	its	pending	work	in	this	service	call.
• Work	involves:
• Responding	to	node	failures	(or)	state	transitions
• Running	fixup jobs	(to	move	primaries	&	meet	factors)

• More	the	#	of	peers	&	#	of	buckets,	more	the	work	to	do	in	the	service	call
• Spike	in	the	service()	duration	during	node	failure	if	peer	has	lot	of	buckets
• The	interval	between	two	successive	service	calls	can	be	configured	using	
config	“service_interval”

• The	new	default	value	of	service_interval =	0,	which	means	auto	mode

21

CM	service



• In	auto	mode,	next	service call	is	scheduled	based	on	duration	of	the	
current	service	call	(interval	is	capped	by	max_auto_service_interval)

• Alternatively,	you	can	manually	tune	service_interval as	the	cluster	grows	
in	size	(along	with	heartbeat	&	restart	timeouts)

22

CM	service



Fixups
• CM	iterates	through	list	of	buckets	in	its	fixup list	attempting	to	fix	them
• It	involves	re-assigning	primaries,	creating	replication	copies,	making	buckets	searchable,	rolling	

buckets,	freezing	buckets	etc.
• Assuming	sf	>	1,	primary	fixups	are	expected	to	finish	faster	without	delay
• cluster/master/fixup end	point	displays	buckets	in	the	fixup list	by	’level’	(level=replication_factor,	

search_factor	etc.)
• Its	expected	for	the	master	to	take	sometime	to	fix	rf/sf	if	there	are	lot	of	buckets	in	fixup	&	this	can	

be	carefully	controlled	by	tuning	max_peer_rep_load(5) &	max_peer_build_load(2)
• Fixup	supports	a	’filter’	option	which	allows	filtering	buckets	based	on	some	condition

• For	example	/services/cluster/master/fixup?level=replication_factor&filter=minutes_in_fixup>100 lists	buckets	
stuck	in	fixup	for	more	than	100	minutes	– Something	wrong	with	this	bucket?

FYI:	CM	does	not	perform	rep	&	search	fixups	in	maintenance	mode,	this	can	be	helpful	to	avoid	
unnecessary	replications	during	planned	downtime	of	peer(s)

23



UI	actions	on	buckets	stuck	in	fixup

24

Note:	Be	careful	with	’Delete	copy’	especially	if	there	is	only	one	copy



Copyright	©	2016	Splunk	Inc.

````Cluster	config/info


• services/cluster/config on	master	&	peers	lists	clustering	configuration

26

27

services/cluster/{master|slave}/info
Displays	node	configuration

Copyright	©	2016	Splunk	Inc.

````Debugging	&	logs



Index=_internal

• _internal index	is	the	source	for	all	the	activity	of	splunkd
• Few	log	files	to	look	at	(or)	correlate
• source=*splunkd.log* :	to	get	an	overview	of	what	splunkd	is	doing
• source=*splunkd_access.log*:	to	see	all	incoming	REST	calls	&	response	codes
• Source=*metrics.log*:	to	see	metrics	about	how	splunk	is	performing	
(different	throughputs,	queue	sizes,	response	times,	jobs	count	etc.)

29



Clustering	related	logs
• Look	for	WARN/ERROR’s in	following	clustering	components	to	get	an	overview	of	

what	went	wrong	when	things	go	unexpected
• Few	components	at	cluster	master:
• CMMaster	– handles	general	cluster	master	functionality
• CMPeer	– handles	a	particular	slave/peer	specific	work
• CMBundleMgr	– handles	cluster	bundle	related	functionality
• CMRepJob	– handles	any	replication	related	jobs/functionality
• CMBucket	– represents	a	bucket

• Few	Components	at	cluster	peer:
• CMSlave	– handles	all	the	general	slave/peer	functionality
• CMBundleMgr	– handles	slave	bundle	related	functionality
• BucketReplicator	(send	side),	S2SFileReceiver	(receive	side)	– Replicating	buckets

30



Logs	related	to	buckets

• Search	by	bid	(index~0~1108~10BBFD2B-BDF8-411B-B574-
FEAF37D6F486)	helps	understand/trace	more	about	what	went	
wrong	with	a	particular	bucket

• Most	of	the	internal	logs	usually	gets	rotated	fast	in	the	production	
clusters	so	‘splunk	diag’	might	not	have	any/all	the	information	
related	to	a	particular	bad	bucket

• Exporting	search	results	on	a	bucket	id	(like	index=_internal	
{source=*splunkd.log*}	BUCKET_ID)	helps	us	understand	more	about	
what	went	wrong	with	a	particular	bucket

31



Copyright	©	2016	Splunk	Inc.

````Recent	enhancements


• Scaling	master	&	peers	to	be	able	to	handle	larger	bucket	volumes
• Batching	jobs,	reducing	restarts,	optimize/eliminate	expensive	operations,	
reducing	disk	scans

• Better	failure	recovery	when	things	go	wrong
• Auto	recover	from	state	inconsistencies	b/w	master	&	peers,	Provide	options	
to	take	actions	on	any	anomalous	bucket	states

• Data	Rebalancing	for	balanced	data	&	search	load	distribution
• Summary	replication	to	reduce	io	&	cpu	spikes	due	to	summary	

regeneration	on	node	failures
• Tsidx	reduction for	reduce	storage	costs

33

Recent	enhancements

THANK	YOU

