Solve Big Problems with ML

Julian Andre Staff Sales Engineer, East Strategics Splunk, Inc.

Dr. Tom LaGatta Staff Sales Engineer, East Strategics Splunk, Inc.

.conf2016

splunk>

Abstract

Sometimes problem-solving feels like fighting fires with no relief. Leverage machine learning
to help solve the problem of problem solving. We will introduce general ML concepts &
workflows, and guide you through the long slog of exploratory data analysis to figure out what
relates to what. Then we'll walk you through how to develop a systematic architecture to
leverage ML models and improve your team's problem-solving capabilities. We'll talk about
big data architectures, how to fit models on historical data and apply them in real time. We
will close with a demonstration of ML capabilities in Splunk.

Machine Learning Customer Success

Optimizing operations and business results

ML Toolkit Customer Use Cases

TELUS	Reduce customer service disruption with early identification of difficult-to-detect network incidents Minimize cell tower degradation and downtime with improved issue detection sensitivity
Zillow	Speed up website problem resolution by automatically ranking actions for support engineers
döcomo	Ensure mobile device security by detecting anomalies in ID authentication
Entertainment Company	Predict and avert potential gaming outage conditions with finer-grained detection Prevent fraud by Identifying malicious accounts and suspicious activities
ØTelco	Improve uptime and lower costs by predicting/preventing cell tower failures and optimizing repair truck rolls

TELUS

splunk> .conf2016

Detect Network Outliers

Reduced downtime + increased service availability = better customer satisfaction

"The ability to model complex systems and alert on deviations is where IT and security operations are headed ... Splunk Machine Learning has given us a head start..."

7

splunk> .conf2016

Proactive website monitoring leads to reduced downtime

ML Use Case	 Very frequent code and config updates (1000+ daily) can cause site issues Find errors in server pools, then prioritize actions and predict root cause
Technical overview	 Custom outlier detection built using ML Toolkit Outlier assistant Built by Splunk Architect with no Data Science background

"Splunk ML helps us rapidly improve end-user experience by ranking issue severity which helps us determine root causes faster thus reducing MTTR and improving SLA

8

IT Ops: Predictive Maintenance

<u>Problem</u>: Network outages and truck rolls cause big time & money expense <u>Solution</u>: Build predictive model to forecast outage scenarios, act pre-emptively & learn

- 1. Get resource usage data (CPU, latency, outage reports)
 - 2. Explore data & build KPIs

Operationalize

- 3. Fit, apply & validate models on past / real-time data
- 4. Predict and act. Identify resource spikes, create alerts
- 5. Surface incidents to IT Ops, who INVESTIGATES & ACTS

Security: Find Insider Threats

<u>Problem</u>: Security breaches cause big time & money expense <u>Solution</u>: Build predictive model to forecast threat scenarios, act pre-emptively & learn

- 1. Get security data (data transfers, authentication, incidents)
 - 2. Explore data & build KPIs

Operationalize

- 3. Fit, apply & validate models on past / real-time data
- 4. Predict and act. Identify anomalous behaviors, create alerts
- 5. Surface incidents to Security Ops, who INVESTIGATES & ACTS

Business Analytics: Predict Customer Churn

<u>Problem</u>: Customer churn causes big time & money expense <u>Solution</u>: Build predictive model to forecast possible churn, act pre-emptively & learn

- 1. Get customer data (set-top boxes, web logs, transaction history)
 - 2. Explore data & build KPIs
- 3. Fit, apply & validate models on past / real-time data
- 4. Predict and act. Identify churning customers, create alerts
- 5. Surface incidents to Business Ops, who INVESTIGATES & ACTS

Summary: The ML Process

<u>Problem</u>: <Stuff in the world> causes big time & money expense <u>Solution</u>: Build predictive model to forecast <possible incidents>, act pre-emptively & learn

- 1. Get all relevant data to problem
 - 2. Explore data & build KPIs

Operationalize

- 3. Fit, apply & validate models on past / real-time data
- 4. Predict and act. Identify notable events, create alerts
- 5. Surface incidents to X Ops, who INVESTIGATES & ACTS

ML 101: What is it?

- Machine Learning (ML) is a process for generalizing from examples
 - Examples = example or "training" data
 - Generalizing = build "statistical models" to capture correlations
 - Process = ML is never done, you must keep validating & refitting models
- Simple ML workflow:
 - Explore data
 - FIT models based on data
 - APPLY models in production
 - Keep validating models

"All models are wrong, but some are useful." - George Box

splunk> .conf2016

Building ML Apps

- An ML application is an app which uses ML to solve a business problem
- An algorithm is just one piece of a larger solution
- Example: Outage Forecasting app, with workflows, analytics & alerts
 - Personas: deliver insights to IT Ops
 - Data: all IT-relevant data (incl. tickets)
 - Analytics: compute KPIs from raw data \leftarrow 80% of work here
 - ML: correlate outages with traffic, latency, resource usage, etc.
- Keep in mind:
 - Who is this solution designed for? Does this solve their problem?
 - What data is needed? What KPIs do we have to monitor? Who builds KPIs?
 - How do we fit/apply models as part of the app? Who validates models?

Machine Learning and Advanced Analytics at Splunk

Purpose-built, turnkey-key analytics dedicated to managing IT services and security

Packaged Machine Learning

Easy to use ML integrated into standard day-to-day operations

splunk>enterprise

splunk > cloud

Integrated & custom analytics for any use case

Custom Machine Learning

Predictive analytics tailored for a customer's specific environment and target use cases

From platform to packaged premium solutions

Machine Learning in Splunk ITSI

Adaptive Thresholding:

- Learn baselines & dynamic thresholds
- Alert & act on deviations
- Manage for 1000s of KPIs & entities
- Stdev/Avg, Quartile/Median, Range

Anomaly Detection:

- Find "hiccups" in expected patterns
- Catches deviations beyond thresholds
- Uses advanced proprietary algorithm

splunk> .conf2016

Splunk User Behavior Analytics (UBA)

- Understand normal & anomalous behaviors for ALL users
- UBA detects Advanced Cyberattacks and Malicious Insider Threats
- Lots of ML under the hood:
 - Behavior Baselining & Modeling
 - Anomaly Detection (30+ models)
 - Advanced Threat Detection
- E.g., Data Exfil Threat:
 - "Saw this strange login & data transfer for user mpittman at 3am in China..."
 - Surface threat to SOC Analysts

Splunk Machine Learning Toolkit

Assistants: Guide model building, testing & deployment for common objectives

Showcases: Interactive examples for typical IT, security, business, IoT use cases

SPL ML Commands: New commands to fit, test and operationalize models

Python for Scientific Computing Library: 300+ open source algorithms available for use

Build custom analytics for any use case

1. Where's the Data & Who Needs it?

- Prioritize & solve the big problems:
 - Cell tower or critical infrastructure failing
 - Hard-to-find, high-risk behaviors
- Use ALL data to help solve problems:
 - E.g., can't identify app crashes without app data
 - Enrich machine data with tickets, app data, DB, etc.
- Find the stakeholders:
 - Who owns these problems?
 - Who will invest in you to build a solution?
- Solutions not science projects:
 - If it's mission-critical, treat it as such (Dev -> QA -> Prod)
 - Prototype: build simple MVPs, show value, iterate

2. Explore Data & Prototype in Splunk

- Data Science is 80% Data Exploration Build KPIs!!
- Is the data in Splunk?
 - Munge it in Splunk
 - ML prototype in Splunk
 - Model analysis/validation: Splunk + other tools
 - Operationalize in Splunk
- Data not in Splunk? Why not?
 - 1000+ Splunk apps & add-ons
 - Get DB data using DB Connect
 - Get Hadoop data using Hadoop Connect
 - Get NoSQL data using Splunk apps/add-ons

3. Fit, Apply & Validate Models

- ML SPL New grammar for doing ML in Splunk
- fit fit models based on training data
 - [training data] | fit LinearRegression costly_KPI
 from feature1 feature2 feature3 into my_model
- apply apply models on testing and production data
 - [testing/production data] | apply my_model
- Validate Your Model (The Hard Part)
 - Why hard? Because statistics is hard! Also: model error ≠ real world risk.
 - Analyze residuals, mean-square error, goodness of fit, cross-validate, etc.
 - Take Splunk's Analytics & Data Science Education course

LOTS of new algorithms in ML Toolkit v2.0

- ARIMA
- SGDClassifier
- SGDRegressor
- DecisionTreeClassifier
- DecisionTreeRegressor
- AdaBoostRegressor
- BernoulliNB
- Birch
- DBSCAN
- ElasticNet
- FieldSelector
- GaussianNB
- KMeans

- KernelPCA
- KernelRidge
- Lasso
- LinearRegression
- LogisticRegression
- OneClassSVM
- PCA
- RandomForestClassifier
- RandomForestRegressor
- Ridge
- SVM
- SpectralClustering
- TFIDF
- StandardScaler

4. Predict & Act

- Forecast KPIs & predict notable events
 - When will my system have a critical error?
 - In which service or process?
 - What's the probable root cause?
- How will people act on predictions?
 - Is this a Sev 1/2/3 event? Who responds?
 - Deliver via Notable Events or dashboard?
 - Human response or automated response?
- How do you improve the models?
 - Iterate, add more data, extract more features
 - Keep track of true/false positives

splunk>

.conf2016

5. Operationalize Your Models

- Operationalizing closes the loop of the ML Process:
 - 1. Get data

Operationalize

- 2. Explore data & fit models
- 3. Apply & validate models
- 4. Forecast KPIs & events
- 5. Surface incidents to Ops team

- When you deliver the outcome, keep track of the response
 - Human-generated response (detailed journal logs, etc)
 - Machine-generated response (workflow actions, etc)
 - External knowledge (closed tickets data, DB records, etc)
- Then operationalize: feed back Ops analysis to data inputs, repeat
- Lots of hard work & stats, but lots of value will come out.

Example ML Architectures

- Example 1: Build models on Enterprise Security alerts
 - Data comes from: Splunk + ES indexes (index=notable, index=risk)
 - Fit workflow: fit models based on user/entity behavior
 - Apply workflow: apply model scores as part of correlation search
 - Who validates: SOC content developers
 - Action/Outcome: Deliver alerts to SOC analysts, reduce false positives & alert volume
- Example 2: Build models across clickstream + transaction data
 - Data comes from: Splunk + DB/Hadoop/NoSQL
 - Fit workflow: fit models based on customer behavior & actions
 - Apply workflow: apply model scores as part of regular jobs
 - Who validates: Business analysts + Splunk power users
 - Action/Outcome: Target qualified marketing leads, reduce customer churn

Example 1: Cluster IPs based on Security Alerts

`notable`		Last 7 days 🗸 🔍
chart count by src rule_name		
addtotals		
fit KMeans k=10 * into ip_rule_model		
		J
✓ 31,981 events (7/22/16 12:00:00.000 PM to 7/29/16 12:58:55.000 PM) No Event Sampling ✓	🚺 Job 🗸 🔢 🔳 🤌 🎂 .	🛓 🍷 Smart Mode 🗸
Events Patterns Statistics (13,244) Visualization		

< Prev 1 2 3 4 5 6 7 8 9 ··· Next >

src \$	Account Deleted \$	Brute Force Access Behavior Detected ≎	Excessive Failed Logins ≎	High Volume of Traffic from High or Critical Host Observed \$	Host Sending Excessive Email ≎	Unroutable Activity Detected ≎	Vulnerability Scanner Detected (by events) ≎	Vulnerability Scanner Detected (by targets) ≎	Watchlisted Event Observed ≎	Total 🗸	cluster ≎
10.141.2.170	0	0	0	0	0	61	0	0	0	61	2
10.1.21.153	0	7	20	0	7	0	1	2	0	37	4
10.10.41.200	0	7	19	0	7	0	1	2	0	36	4
10.11.36.20	0	7	19	0	7	0	0	3	0	36	4
10.1.21.67	0	7	18	0	7	0	1	2	0	35	4
10.116.240.105	0	7	18	0	7	0	1	2	0	35	4
10.11.36.7	0	7	14	0	7	0	0	0	0	28	1

Example 2: Fit Regression Model on Sales Data

<pre>timechart count, max(date_hour) reverse streamstats window=2 s eval target =(rollingforecast3da fit LinearRegression "target" fr eval residual='predicted(target)</pre>	as max_date_hour span=1h sum(count) as rollingforecast3day reverse ny-count) fields - rollingforecast3day com "max_date_hour" into retailmodel_DONUT_sa	mple	Last 3 days V
<pre>revail residual = predicted(target) redicted(target) AS "Model", resi ////////////////////////////////////</pre>	Aual AS "Model Accuracy"	Job V II	↓
ints Patterns Statistics (72)) Visualization		
00			
	. Միրակե	lillimilia.	
00			Actual Sales
			Model Accuracy

Example 2: Apply Regression Model on Sales Data

index=pos TYPE=DONUT REGISTER<5							Q
<pre>timechart count apply retailmod eval residual=c edicted(target)</pre>	, max(date_hour) as el_DONUT ount-'predicted(tar AS "Predicted Volu	<pre>max_date_hour spa get)' fields - m me", residual AS '</pre>	nn=1h nax_date_hour,targe 'Residual"	t rename count A	AS "Actual Volume",		
48,229 events (7/28/ ents Patterns	316 4:00:00.000 PM to 7/29 Statistics (25)	9/16 4:37:16.000 PM) Visualization	No Event Sampling ~		Job 🗸 🔢 🥻 🧎	🖶 👱 🔸 Fast N	∕lode ∽
I Column Chart 🗸	✓Format ✓						
000							
	.		_104				
000			1.			Actual N Predicte Residua	/olume d Volum l
4:00 PM Thu Jul 28 2016	8:00 PM	12:00 AM Fri Jul 29	4:00 AM	8:00 AM	12:00 PM		
2010							

Next Steps with Splunk ML

- Reach out to your Tech Team! We can help architect ML solutions.
- ITSI: surface anomalous alerts & outliers, better root-cause analysis
 - Free ITSI Cloud Sandbox! <u>http://splunk.force.com/SplunkCloud?prdType=ITSI</u>
- UBA: track anomalous behaviors, surface live threats
- ML Toolkit for building your own ML solutions
 - Completely free! <u>http://tiny.cc/splunkmlapp</u>
- Other cool ML talks:
 - When Recommendation Systems Go Bad
 - Hidden Biases in Machine Learning and Big Data
- Join the ML Early Adopter Program!
 - <u>mlprogram@splunk.com</u>

splunk > .conf2016