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Forward-Looking Statements

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.
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Why Spark?

» Most of machine learning algorithms are iterative because each iteration can
iImprove the results

» With disk based approach each iteration’s output is written to disk, making it slow

Hadoop execution flow
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http://www.wizig.com/blog/hype-around-apache-spark/ splunk> m
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About Apache Spark 723
r

» Initially started at UC Berkeley in 2009 Spq
» Fast and general purpose cluster computing system

» 10x (on disk) - 100x (In-Memory) faster

» Most popular for running /lterative Machine Learning Algorithms.

» Provides high level APls in

* Java, Scala, Python

» Integration with Hadoop and its ecosystem and can read existing data

http://spark.apache.orqg/
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Spark SQL Spark MLIib GraphX
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Spark Core
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Spark Core

» Spark Core contains the basic functionality of Spark
 Task scheduling
- Memory management
- Fault recovery
* |nteracting with storage systems

» Home to Resilient Distributed Datasets (RDDs)
» Provides many APIs for building and manipulating RDD
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Resilient Distributed Dataset (RDD)

» Resilient Distributed Dataset (RDD) is a basic abstraction in Spark
» Immutable, partitioned collection of elements that can be operated in parallel
» Basic Operations
° map
* filter
° persist
» Multiple Implementation
* PairRDDFunctions : RDD of Key-Value Pairs, groupByKey, Join
» RDD main characteristics:

* Alist of partitions
* A function for computing each split
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Spark SQL
DataFrames
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Interfaces to Spark SQL

& Application
5 =
JDBC / ODBC
Spark shell i@
HiveC
SQLC:"te"t - Ttm Spark Thrift Server
A
®
@ @ Hive Metastore @
h 4 h 4 h 4

HDFS
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SQLContext

» Most powerful way to use Spark SQL is inside a Spark application

» Load data and query it with SQL while simultaneously combining it with
“regular” program code utilizing SQLContext or HiveContext

// SQL Imports

// Import Spark SQL. If you can't have
the

// hive dependencies

import org.apache.spark.sql.SQLContext

// Construct SQL Context
val sglContext = new SQLContext(..)

// SQL Imports
// Import Spark SQL

import
org.apache.spark.sgl.hive.HiveContext

// Construct Hive Context
val hiveContext = new HiveContext(..)
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HiveContext (Recommended)

» Provides a superset of the functionality in addition to the basic SQLContext
» Write queries using the more complete HiveQL parser
» Access to Hive UDFs and ability to read data from Hive tables

» Build DataFrames (represent structure data), and operate on them with SQL or with
normal RDD operations like map

13 splunk> m



DataFrames

Offers rich relational/procedural integration within Spark programs

DataFrames:
Collections of structured records that can be manipulated using Spark’s procedural API or
new relational API
Perform relational operations on DataFrames using a domain-specific language (DSL)
similar to R data frames and Python Pandas
Pass Scala, Java or Python functions through DataFrames to build a logical plan
Create directly from Spark’s distributed objects
Enable relational relational processing in existing Spark programs

Automatically store data in a columnar format
Go through a relational optimizer, Catalyst
Standard data representation in a new “ML pipeline” API for machine learning
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Query Federation To External Databases

» Data pipelines often combine data from heterogeneous sources

»Spark SQL data sources leverage Catalyst to push predicates down into the
data sources whenever possible

Example: Use JDBC data source and JSON data source to join two tables together
CREATE TEMPORARY TABLE users USING jdbc

OPTIONS (driver "mysgl" url "jdbc:mysql://userDB/users ")
CREATE TEMPORARY TABLE logs

USING json OPTIONS (path "logs.json")
SELECT users.id,users.name, logs.message

FROM users JOIN logs WHERE users.id=logs.userId

AND users.registrationDate > "2015-01-01"
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Spark MLIib
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Spark Machine Learning Basics

ML algorithms include:

» Classification: logistic regression, naive Bayes,...

» Regression: generalized linear regression, survival
regression...

Decision trees, random forests, and gradient-boosted trees
Recommendation: alternating least squares (ALS)
Clustering: K-means, Gaussian mixtures (GMMs),...

Topic modeling: latent Dirichlet allocation (LDA)

Frequent itemsets, association rules, and sequential
pattern mining

| Test Data |

vV v v VvyYy

Feature
Training Data ! Transformer
Extractor

| ML workflow utilities include:
P Modd P Predction » Feature transformations: standardization, normalization,
o hashing,...
ML Pipeline construction
Model evaluation and hyper-parameter tuning
ML persistence: saving and loading models and Pipelines
Distributed linear algebra: SVD, PCA,...
Statistics: summary statistics, hypothesis testing,...
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Amazon Product

Review

‘.A

Predict

Spark Classification ML Example

.
Data Frame Preview Data
Ko
Logistic : Test/Training
-~ Regression Sl
- -

Class Distribution \

Tokenise and )’

Count Vectorize |

v v VvV Yy

Supervised learning for
predicting discrete labels

Multiple algorithms

logistic regression
Decision tree classifier
Random forest classifier
Gradient boosted tree
classifier

» Multi-layer neural network
classifier
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Spark Classification ML Code Example

‘ Extract Fields ‘ Build Model

val trainingDataTable = sql(""" val trainingData = trainingDataTable.map { row =>

SELECT e.action val model =

u.age, new LogisticRegressionWithSGD().run(trainingData)

u. latitude,
Predi
u. logitude ‘ ed Ct
case class Score(userId: Int, score: Double)

FROM Users u

1 = all idates. =
JOIN Events e val scores = allCandidates.map { row =>

ON u.userd = e.userTd" ") val features = Array[Double](row(1), row(2), row(3))

Score(row(@), model.predict(features))
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Spark GraphX
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Spark GraphX

= Vertex Property:. Multiple Algorithms

e User Profile

+ Current PageRank Value > PageRank
» Connected components

Label propagation

SVD++

Strongly connected components
Triangle count

— kdge Property:

* Weights
* Relationships
* Timestamps

vV v v Yy
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Property Graph

< 5
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Spark GraphX Example

Vertex Table

Property (V)

(rxin, student)

(jgonzal, postdoc)

(franklin, professor)

N O D W

(istoica, professor)

Edge Table

Srcld

Dstld

Property (E)

7

Collaborator

Advisor

Colleague

UniN D

3
5
E

Pl

// Assume the SparkContext has already been constructed
val sc: SparkContext
// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] =
sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))
// Create an RDD for edges
val relationships: RDD[Edge[String]l] =
sc.parallelize(Array(Edge(3L, 7L, "collab"),  Edge(5L, 3L, “advisor"),
Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))
// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")
// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)
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Spark GraphX Architecture

Vertex Routing Edge Table
Property Graph Table Table (RDD)
RDD RDD
Part. | ( ) ( )

oo

-~
G &

A\

St
ololele] ololole

| QUL

DS/

o
O
=

o

7 upel

VODNANNM

Part. 2

\

splunk> [0



© 2017 SPLUNK INC.

Spark Stream
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Spark Stream

® Chop up the live stream into
batches of X seconds

® Spark treats each batch of
data as RDDs and processes
them using RDD operations

® Finally, the processed results
of the RDD operations are
returned in batches

© 2017 SPLUNK INC.

live data stream

batches of X
seconds

CE
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Streaming
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Scalability

Integration Easy Difficult Difficult Difficult
Development Easy, Difficult Difficult Difficult
flexible
Operations Easy Difficult (Clustering) | Difficult (Clustering) Difficult (Clustering)
Infrastructure | Small Large (Clustering) Large (Clustering) Large (Clustering)
Delivery At least At least once Exactly Once Exactly Once
once
Latency Milliseconds | Seconds Milliseconds Milliseconds
Fault Tolerance | Yes Yes Yes Yes
Yes No Yes No
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Document Classification
With Splunk And Spark
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2016 Spark Survey

TYPES OF PRODUCTS BUILT 38% 40%

% of respondents who use Spark to create each product (more than one product could be selected)
24% %
l 5%

%
14% I 130 22

2015 2016 2015 2016 2015 2016 2015 2016

57% DATA WAREHOUSING

%
40 RECOMMENDATION ENGINES DATAFRAMES SQL STREAMING ADVANCED
ANALYTICS (MLLIB)

D N N N N

— 3(% USER-FACING SERVICES +l530/0 + 670/0 +57% +ll%
_ 79% FRAUD DETECTION / SECURITY

LANGUAGES USED IN SPARK YEAR-OVER-YEAR

% of respondents who use each language (more than one language could be selected)

37% LoG PROCESSING

DATAFRAMES sQL STREAMING ADVANCED ANALYTICS
USERS USERS USERS

SPARK COMPONENTS USED IN PRODUCTION YEAR-OVER-YEAR

% of respondents who use each component in production (more than one component could be selected)

71%
62% 65%
589’0
% %

% 20% 24% 22% o

18 I 15% 14% . 13% 18

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016
SQL R PYTHON SCALA JAVA DATAFRAMES SQL STREAMING ADVANCED
ANALYTICS

(MLLiB)




Document Classification: Why Spark?

Problem: Spark processing does not provide easy analytics or any visualizations

Goal: Allow analysts and regulators the ability to know exactly where each file exists
In the system

Solution: Apache Nifi collect all new files from NFS and stores it on Hadoop. Spark
Core, Spark Machine Learning, and Apache Tika create Metadata classification.
Splunk Analytics for Hadoop exposes metadata classification files to end users.
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Architecture
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Spark SQL And Splunk

Splunk
DB Connect
; D
| Simba JDBC |
=

Spark Thrift Server I
=~

<>
Hive Metastore @

HDFS
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Spark SQL And Splunk

db_connection_types.conf

[spark_sq|l]

displayName = Spark SQL

serviceClass = com.splunk.dbx2.sparksql.SparkSqlJDBC
jdbcUrlFormat = jdbc:spark://<Thrift Server Host>:<Thrift Server

Port>/<database>
jdbcDriverClass = com.simba.spark.jdbc41.Driver
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Spark SQL And Splunk

Splunk App: Search & Reporting

Search Pivot Reports Alerts Dashboards

1 Spark DBXQuery

L| dbxquery query="SELECT * FROM "Spark’. xademo'. customer_details " connection="spark_local_2" wrap=t

v

v 30 results (before 8/22/16 10:34:23.000 PM)  No Event Sampling v

Events Patterns Statistics (30) Visualization

20 PerPage v /Formatv  Preview v

(001) (002) (003) (004)
customer_details.phone_number.STRING customer_details.plan.STRING customer_details.rec_date.STRING customer_details.status.STRING

PHONE_NUM PLAN REC_DATE STAUS



Spark ML - Splunk

Spark SQL with Spark Mllib:

https://databricks.com/blog/2014/03/26/spark
manipulating-structured-data-using-spark-2.
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Thank You
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Don't forget to rate this session in the
.conf2017 mobile app
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