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Xander Johnson Zidong Yang
▶ Splunker for 3 years
▶ Was Technical Training Instructor
▶ Software Engineer on ML Team
▶ BA in Linguistics @ USCB
▶ Cycling fanatic

▶ Splunker for 2 years
▶ Software Engineer on ML Team
▶ PhD in Computational Nanoscience 

@ George Washington University 

Who Are We ?



▶ Overview of ML-SPL
• What & Why
• Commands & Algorithms

▶ ML-SPL Extensibility API
• Motivation
• Background
• Examples

• Hello World
• Adaptive Boosting Classifiers!

Outline



ML-SPL Overview
Fit apply you some coefficients for great good!



Machine Learning Is Not Magic

… it’s a process.
Collect 
Data

Explore/
Visualize

Model

Evaluate

Clean/
Transform

Publish/
Deploy



“Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says”, Forbes Mar 23, 2016



Splunk For Data Preparation

Collect 
Data

Explore/
Visualize

Model

Evaluate

Clean/
Transform

Publish/
Deploy

props.conf,
transforms.conf,
Datamodels
Add-ons from Splunkbase, etc.

Pivot, Table UI, SPL
ML Toolkit

Alerts,
Dashboards,

Reports



ML-SPL: What Is It?

▶︎ A suite of SPL search commands specifically for Machine Learning:
• Fit
• Apply
• Summary
• Listmodels
• Deletemodel
• Sample

▶︎ Implemented using modules from the
Python for Scientific Computing Add-on for Splunk:
• scikit-learn, numpy, pandas, statsmodels, scipy



ML-SPL Commands: A “Grammar” For ML

Fit (i.e. train) a model from search results
… | fit <ALGORITHM> <TARGET> from <VARIABLES …>

<PARAMETERS> into <MODEL>

Apply a model to obtain predictions from (new) search results
… | apply <MODEL>

Inspect the model inferred by <ALGORITHM> (e.g. display coefficients)
| summary <MODEL>



ML-SPL Commands: fit

… | fit <ALGORITHM> <TARGET> from <VARIABLES …>
<PARAMETERS> into <MODEL>

Examples:

… | fit LinearRegression
system_temp from cpu_load fan_rpm
into temp_model

… | fit KMeans k=10
downloads purchases posts days_active visits_per_day
into user_behavior_clusters

… | fit LinearRegression
petal_length from species

optional



Toy Example
Titanic Survival Prediction
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Toy Example
Titanic Survival Prediction



▶ Finally we have a machine learning model!
▶ How do we…

• Collect and utilize raw incoming data
• Save, distribute, and control access to the model
• Schedule re-fitting of model
• Publish reports of predictions
• Alert on predictions

Operationalize?
Still must deploy the model!



Toy Example
Titanic Survival Prediction



▶ Anticipates your pain points
• Categorical encoding
• Missing data
• Sampling
• Saving

▶ Chooses the best option
▶ Integrates with data in Splunk

• Cleaning data
• Creating features

Beyond Simply Fitting Models



▶ We can use Splunk Enterprise to…
• Collect and utilize raw incoming data (forwarders, inputs.conf)
• Save, distribute, and control access to the model (knowledge objects, search bundle)
• Schedule re-fitting of model (scheduled searches)
• Handle unknown fields (wildcards)
• Publish reports of predictions (dashboards)
• Alert on predictions (alert actions)

Operationalize!
Using Splunk!



▶ 30 Packaged algorithms come with the MLTK
• Regressors – predicting numeric output
• Classifiers – predicting categorical output
• Clusterers – grouping like with like
• Preprocessing 
• Time series analysis – e.g.  ARIMA, ACF, PACF
• Feature extraction – e.g. PCA, TFIDF

Algorithms
Different tools for different tasks



▶ Required dependency of the MLTK
▶ Provides needed libraries for ML
▶ Miniconda-based
▶ Most notable packages:

• scikit-learn
• pandas
• NumPy
• SciPy
• StatsModels

Python For Scientific Computing (PSC)
Free add-on available on Splunkbase



▶ What happens when the packaged algorithms aren’t the right ones?
• Fulfilling customer requests
• Operationalizing existing analyses or models
• Novel or proprietary algorithms
• Changing default behavior

• Handling missing values
• Arbitrary transformations

Why Custom Algorithms?



ML-SPL Extensibility API
Mixins, Methods, and Machine Learning



▶ The ML-SPL Extensibility API allows one to add custom algorithms that 
can be used with the MLTK’s search commands.

▶ ML-SPL API: Similar to…
• Python SDK for custom commands API
• Custom Visualization API (a.k.a. “modviz”)
• scitkit-learn estimator API

▶ Can be used in separate standalone apps too!
• Still must have MLTK & PSC installed

Extensibility API



Directory Structure: MLTK
$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit

!"" bin
# $"" algos
| !"" LogisticRegression.py
| !"" ...
|    $"" LinearRegression.py
$"" default

$"" algos.conf



Directory Structure: MLTK
$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit

!"" bin
# $"" algos
| !"" LogisticRegression.py
| !"" HelloWorld.py ß algorithm source
|    $"" LinearRegression.py
!"" local
| $"" algos.conf ß register in algos.conf
$"" default

$"" algos.conf



Directory Structure: Custom App
$SPLUNK_HOME/etc/apps/CustomApp

!"" bin
# $"" algos
|   $"" HelloWorld.py ß algorithm source
$"" default

$"" algos.conf ß register in algos.conf



▶ Used to add additional algorithms
▶ Simplest .conf you’ve ever seen

• Each algorithm is only a stanza header

▶ Allows you to package custom algorithms 
in custom apps, just like
• Custom commands
• Custom visualizations
• Custom alert actions

algos.conf
Algorithm Registration

algos.conf

[HelloWorld]
[MyCustomAlgo]



Class Skeleton
CustomApp/bin/algos/CustomAlgo.py

from base import BaseAlgo

class CustomAlgo(BaseAlgo):
def __init__(self, options):

# Option checking & initializations here
pass

def fit(self, df, options):
# Fit an estimator to df, a pandas DataFrame of the search results
pass

def apply(self, df, options):
# Apply a saved model
return df

@staticmethod
def register_codecs():

# Add codecs to the codec manager
pass



Fit Hello World
Basic DataFrame manipulation – using search results

from base import BaseAlgo

class HelloWorld(BaseAlgo):
def __init__(self, options):

pass

def fit(self, df, options):
df['message'] = "Hello World!"
return df





Fit AdaBoostClassifier
Fitting an ensemble classifier

from sklearn.ensemble import AdaBoostClassifier as _AdaBoostClassifier

from base import ClassifierMixin, BaseAlgo
from codec import codecs_manager
from util.param_util import convert_params

class AdaBoostClassifier(ClassifierMixin, BaseAlgo):
def __init__(self, options):

self.handle_options(options)

params = options.get('params', {})
converted_params = convert_params(params, ints=['n_estimators'], 

floats=['learning_rate'])

self.estimator = _AdaBoostClassifier(**converted_params)



Fit AdaBoostClassifier
Fitting an ensemble classifier

@staticmethod
def register_codecs():

from codec.codecs import SimpleObjectCodec, TreeCodec
codecs_manager.add_codec('algos.AdaBoostClassifier',

'AdaBoostClassifier', SimpleObjectCodec)
codecs_manager.add_codec('sklearn.ensemble.weight_boosting',

'AdaBoostClassifier', SimpleObjectCodec)
codecs_manager.add_codec('sklearn.tree.tree',

'DecisionTreeClassifier', SimpleObjectCodec)
codecs_manager.add_codec('sklearn.tree._tree',

'Tree', TreeCodec)





▶ MLTK Provides Mixin classes for common ML problems:
• RegressorMixin – continuous target
• ClassifierMixin – categorical target
• TransformerMixin – arbitrary transformation (no target)
• ClustererMixin – unknown target (unsupervised learning)

▶ Utility methods
• df_util.prepare_features
• df_util.create_output_dataframe

▶ Minimizes boilerplate

Using Built-In Utilities 
Mixins are helper classes in Splunk_ML_Toolkit/bin/base.py



fit: How It Works

1. Discard fields that are null for all search results
2. Discard non-numeric fields with >100 distinct values
3. Discard search results with any null fields
4. Convert non-numeric fields to binary indicator variables

(i.e. “dummy coding”)

5. Convert to a numeric matrix and hand over to <ALGORITHM>
6. Compute predictions for all search results
7. Save the learned model



fit: How It Works

1. Discard fields that are null for all search results.

field_A field_B field_C field_D field_E
ok 41 red 172.24.16.5

ok 32 green 192.168.0.2

FRAUD 1 blue 10.6.6.6
ok 43 171.64.72.1

2 blue 192.168.0.2

Target Explanatory Variables…

… | fit LogisticRegression field_A from field_*



fit: How It Works

2. Discard non-numeric fields with >100 distinct values.

field_A field_B field_D field_E
ok 41 red 172.24.16.5

ok 32 green 192.168.0.2

FRAUD 1 blue 10.6.6.6
ok 43 171.64.72.1

2 blue 192.168.0.2

Target Explanatory Variables…

… | fit LogisticRegression field_A from field_*



fit: How It Works

3. Discard search results with any null fields.

field_A field_B field_D
ok 41 red
ok 32 green
FRAUD 1 blue
ok 43

2 blue

Target Explanatory Variables…

… | fit LogisticRegression field_A from field_*



fit: How It Works

field_A field_B field_D
ok 41 red
ok 32 green
FRAUD 1 blue

Target Explanatory Variables…

… | fit LogisticRegression field_A from field_*

4. Convert non-numeric fields to binary indicator variables.

field_A field_B field_D=r
ed

…=green …=blue

ok 41 1 0 0
ok 32 0 1 0
FRAUD 1 0 0 1



fit: How It Works

5. Convert to a numeric matrix and hand over to <ALGORITHM>.
y = X =

… | fit LogisticRegression field_A from field_*

[1, 1, 0] [[41, 1, 0, 0],
[32, 0, 1, 0],
[1, 0, 0, 1]]

𝑦" = 	
1

1 + 𝑒((*+,)
Find 𝜃 using maximum likelihood estimation.

e.g. for Logistic Regression:

Model inference generally delegated to scikit-learn and statsmodels.
(e.g. sklearn.linear_model.LogisticRegression)



fit: How It Works

43

6. Compute predictions for all search results.

field_A field_B field_C field_D field_E predicted(fiel
d_A)

ok 41 red 172.24.1
6.5

ok

ok 32 green 192.168.
0.2

ok

FRAUD 1 blue 10.6.6.6 FRAUD
ok 43 171.64.7

2.1
ok

2 blue 192.168.
0.2

FRAUD

Target Explanatory Variables…

… | fit LogisticRegression field_A from field_*

Prediction



fit: How It Works

7. Save the learned model.

Serialize model settings, coefficients, etc. into a Splunk lookup table. 
▶︎ Replicated amongst members of Search Head Cluster
▶︎ Automatically distributed to Indexers with search bundle
▶︎ Safe! No pickles

… | fit LogisticRegression field_A from field_* into logreg_model



▶ We have ML-SPL API documentation 
http://docs.splunk.com/Documentation/MLApp/latest/API/Introduction

▶ Examples include
• CorrelationMatrix – using parameters in your search
• AgglomerativeClustering – using df_util methods to clean data, convert categorical, etc.
• Support Vector Regressor – using Mixins
• Savitzky-Golay Filter – arbitrary statistical transformations with NumPy and SciPy

Writing Your Own!
Check the guide!



Q&A



▶ ML-SPL uses sampling to control size of input
▶ Also has a “watchdog” process configured 

• Memory consumption
• Max time spent fitting

mlspl.conf
Resource Consumption Management

[default]
max_inputs = 100000
use_sampling = true
max_fit_time = 600
max_memory_usage_mb = 1000
handle_new_cat= default
max_model_size_mb = 15
streaming_apply = false

[SVM]
max_inputs = 10000
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