
Dockerizing Splunk At Scale

Brent Boe | Software Engineer

September 2017 | Washington, DC

Brian Bingham | Software Engineer

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in the United
States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements
THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

▶ How about 20 TB / day
ingestion and event
generation
• 100 Beefy Servers
• 20 Week Run-time
• 7 Engineers
• Multiple Installed Apps
• Datamodel Acceleration

What’s Splunk At Scale?

▶ We’ll never tell

How’d We Do It?

▶ Just kidding, that’s why we’re here!

▶ About Us!
▶ Discuss the issues that caused Splunk to look for container based solutions
▶ Describe the tool goals for the problem set
▶ Give an overview of what the orchestration tool can do
▶ Give a brief demo of splunk setup and configuration
▶ Describe the architecture of the tool
▶ Describe the architecture of the containers
▶ Describe why we setup containers the way we did
▶ Question and Answer

Agenda

About Us!

▶ Developer at Splunk for 7 years
• Splunk Apps -

• ITSI (Up until 1.0)
• VMWare (2.0-4.0)
• NetApp (Guidance only)
• ES (only on 2.1)

• Infrastructure
• ORCA
• Eventgen

I Like To Pretend
(that I’m good at disc golf…)

A Little About Brent

▶ Working in technology since 2001
▶ Splunker since 2013

• Splunk App Development
• ITSI, Splunk for VMWare, Splunk for NetApp

• Infrastructure
• ORCA

▶ I like rock climbing, half marathons, and
automation

Splunk Is Hard?

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in the United
States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements
THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

▶ Splunk’s greatest strengths, are also it’s biggest weaknesses
• 100 ways to skin a cat (SPL)
• Scaling Splunk from 1 rapid setup instance to clustering is challenging
• Data ingestion done incorrectly forces reindexing
• Writing apps for every Splunk architecture can prove challenging

• (search head pooling, search head clustering, index clustering etc)
• Takes several months to ramp up a new employee
• Splunk is easy, Splunk at scale, isn’t
• Changing the architecture after it’s built requires careful steps
• Testing every Splunk Build in every configuration requires a massive infrastructure
• Testing Splunk growing as data volume increases requires dynamic allocation of test nodes

With Great Power Comes Great Responsibility

Virtualization Styles

▶ Tested Containers
• kubernetes
• docker UCP
• docker swarm
• (several others)

▶ Compared VM technologies
• vmware
• openstack
• kvm

Platforms

▶ (Please note tools have features now, that they didn’t back when we looked…)
▶ No single tool allowed complex orchestration of different image types
▶ No easy ways to isolate and extend
▶ No way to lock 1 container to 1 vm / host just for performance testing
▶ No speed degradation for the virtualization layer
▶ No way to run a standardized scripting language across windows and nix

▶ If one tool did one thing well, it lacked somewhere else…

Everything Was Only 80% There…

Enter ORCA

▶ ORCA enables users to quickly and correctly configure splunk test environments.
▶ ORCA can create different deployments very quickly

• Less than one minute to bring up a standalone instance
• About 3 minutes to bring up a generic search head cluster
• Deployments can be local or deployed on UCP

▶ ORCA can create custom deployments very quickly and easily
• Splunk cloud deployments
• Deployments from feature branches for both apps and core builds
• Additional customization can be provided by the user

What Is ORCA?
Splunk Orchestration and Automation Layer

▶ Run our performance tests without needing to wait a week for a stack
• These were usually 20 TB tests involving a large number of virtual machines
• Often there were problems with configuration that introduced delays…
• … because configuration was still being done mostly manually

▶ Lower transaction costs for developers to run tests in complicated environments
• Developers would re-use VMs – and may have unclean environments
• Configuration and setup problems would lead to longer testing times for features and bugfixes

▶ Automation!!

Original Goals of ORCA

▶ Strive for ease of use for early users
• Documentation to get people off the ground quickly

▶ Strive for input flexibility for advanced users
• Recipe style examples so that people know how to write advanced plays
• Repository of sample plays to work with

▶ Strive for maintainability
• Simple architectures, easy to read code. Anybody should be able to figure out what’s going on

▶ No interactivity
• Tools should be designed to be scripted and automated. Humans need not apply

ORCA Design Principles
Ease of Maintenance, Ease of Use

ORCA Concepts
Definitions and Workflow

▶ Orchestrator container
• This is the container that is run locally, and used to configure containers on the target

▶ Splunk ORCA container
• These are the containers that run splunk, that are configured by the orchestrator container

▶ Key technologies utilized
• Splunk
• Docker
• UCP
• Openstack
• Ansible

Terminology/Definitions

▶ We want to cover the largest set of general testing scenarios
• Standalone instances
• Search heads
• Indexers
• Apps
• Heavy Weight Forwarders
• … In any combination you want

▶ One stack per deployment
• One search head cluster in the stack
• For multi-site, and other advanced configurations, you can combine the networks

Cover the 85%
General Workflow And Scope

ORCA Features
What ORCA can do for you

▶ Upgrade Command
• Upgrades a stack

▶ Config Command
• Configure the environment

▶ Start Command
• Start the container or deployment (if stopped)

▶ Stop Command
• Stop the container or deployment

▶ Build Command
• Build a container image

So far…

▶ Create Command
• Create a stack

▶ Provision Command
• Poorly named
• Run ansible plays against the stack

▶ Destroy Command
• Tear down a stack

▶ Show Command
• Show deployment or container details

▶ Exec Command
• Execute an action on the container

The Commands

▶ We can run any custom ansible play after provisioning using --playbooks
• Instructions and Examples are provided on Confluence
• We want to enable Mission Teams / Users to test a wide range of scenarios with automated,

traceable configurations.
• The provision command separates it out so that these steps can be run on demand

▶ We can create additional docker containers in the stack using --services
• These containers are likely not splunk containers, and custom to the specific testing environment

▶ Combine these two, and you have a powerful provisioning and configuration tool.

Custom Ansible Plays, Custom Services

Demo

ORCA Architecture
Overview

View from 30,000 feet

Introducing The Two Different Containers
The Orchestrator and the Deployment Containers

▶ The Orchestration Container
• Executes nearly all of the code for

deployment
▶ Why did we choose to ship as a

container?
• Keep installation dead simple
• No dependency hell to walk through
• Consistent environment

The Orchestrator Container

Internals

▶ The Splunk Container
• Splunk
• SSH – for ansible

• Ansible can also be run from this node
• Ansible itself

▶ Pretty heavyweight containers
• We don’t follow container best practices

here, we’re making them more like VMs

The Splunk Container

ORCA Splunk
Container Ecosystem

And Internals
Stacking The Deck

▶ /opt/splunk
• Our favorite location for all of the splunk binaries, also $HOME

▶ sshd
• Required for ansible

▶ python
• Generally useful

▶ ansible
• “Ansible mode” – run the plays from the Splunk Container instead of the Orchestrator. Good for

working over a bad vpn connection.

Splunk Container Contents
What’s installed

▶ UCP is our container environment
• Currently 600 nodes

▶ Performance mode
• One container per host
• Allow the container to use all of the resources of the host

▶ Test mode
• As many containers as we can binpack into the remaining nodes (in theory)
• Different deployments may be on a single node or split between nodes

▶ Local mode (--local)
• Not recommended for larger stacks
• Avoids UCP altogether, good for bad network connections

Different Ways To Run The Splunk Container
How do we use our resources

▶ Provision compute
resources. Usually
has splunk binary

▶ Pre-ansible
configuration. Copy

SSH keys.

▶ Run ansible to
complete splunk

configuration.

General Workflow

Creating The Splunk Containers

▶ FLEXIBILITY!
• Testing environments can become chaotic very quickly, we want to anticipate any kinds of

changes that a user wants
• Sets up us nicely for customization

▶ Keep the container count minimal
• Statically, it would be (Count of images)*(Number of Roles) = A lot
• We don’t want to add build layers on top of every commit

▶ Splunk itself has some issues with configuration
• Ansible is much better about retrying tasks that have a high rate of failure

▶ We do not want to rely too much on docker

Why Did We Split It Up This Way?
Why not offload as much as we could into the static image

▶ Ansible does the following for us
• Configure the search head cluster
• Configure individual nodes

▶ Install apps
▶ Configure apps
▶ Run custom plays against custom containers

• Each type of custom container gets its own role
• Easy to extend

▶ Each role determines what commands to execute on the host
• A stack can consist of any number of roles

▶ This mostly follows ansible best practices
▶ The roles themselves are fairly resilient.

• Retrying and waiting until resources become available when necessary

Executing The Ansible Code
Provision Compute Resources, then run Ansible to configure

The Payoff

▶ We ran 1 command:
• orca create —sh 5 —idx 30 —eg 100

• That command creates 135 containers on UCP
• It does this by bringing up the local orchestrator
• UCP schedules the containers on nodes
• UCP then hands off the created containers back to the orchestrator
• Ansible takes over and starts to provision the machines to their desired role
• After the stack is provisioned, Ansible then tells the event-generators to start firing events

How’d We Do A 20 TB / Day Test?

▶ Produces a single method for recreation
▶ Repeatability
▶ No Prior Splunk knowledge needed for stack creation
▶ Full cluster setup with load balancing in front of indexers, in under 15min
▶ Testing at larger scales on all functional testing allows us to catch bugs before

you hit them

▶ End User’s Reaction: “I wish I had a tool like this 2 years ago”

Results

Questions?

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

