
Extending SPL with
Custom Search Commands

Jacob Leverich | Director of Engineering

2017/08/11 | Washington, DC



During the course of this presentation, we may make forward-looking statements regarding future events or 
the expected performance of the company. We caution you that such statements reflect our current 
expectations and estimates based on factors currently known to us and that actual events or results could 
differ materially. For important factors that may cause actual results to differ from those contained in our 
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live 
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate 
information. We do not assume any obligation to update any forward looking statements we may make. In 
addition, any information about our roadmap outlines our general product direction and is subject to change 
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract 
or other commitment. Splunk undertakes no obligation either to develop the features or functionality 
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in 
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.



Who am I?

Splunker for 3 years, based in San Francisco

Engineering manager in Splunk’s Incubation team

Implemented Search Command Protocol Version 2

Die-hard Longhorns fan 

3



Agenda

4

Introduction to Custom Search Commands
How do Custom Search Commands work?
– High-level concepts
– Low-level details

Types of Search Commands
How to create new Custom Search Commands
Wrap-up



Introduction to 
Custom Search 

Commands



What is a Custom Search Command?

A user-defined SPL command.



7

| search



8



What is a Custom Search Command?

A user-defined SPL command.

Can be used to extend the SPL language!



Who uses Custom Search Commands?

Partners
– Concanon, etc.

Customers
– Use-case specific analytics

Splunk!
– predict command
– IT Service Intelligence
– Enterprise Security
– DB Connect
– Machine Learning Toolkit

Anyone who wants to extend the Splunk platform
– Integration with 3rd party services
– Implementation of custom logic



How do Custom 
Search Commands 

work?



How do Custom Search Commands work?

12

1. When parsing SPL, splunkd interrogates each command.
“Are you a Custom Search Command?”

2. If so, spawn external process and allow it to parse arguments.

3. During search, pipe search results through external process.



Parsing #1: Split search into commands

13

| inputlookup geo_attr_us_states.csv | GOCRAZY | head 5

inputlookup geo_attr_us_states.csv

GOCRAZY head 5



Parsing #2: Look for custom search commands

14

| inputlookup geo_attr_us_states.csv | GOCRAZY | head 5

inputlookup geo_attr_us_states.csv

GOCRAZY head 5

[gocrazy]
…

commands.conf



Parsing #3: Spawn external process

15

| inputlookup geo_attr_us_states.csv | GOCRAZY | head 5

inputlookup geo_attr_us_states.csv

GOCRAZY head 5

$SPLUNK_HOME/bin/python gocrazy.py



Parsing #4: Let external process parse arguments

16

| inputlookup geo_attr_us_states.csv | GOCRAZY | head 5

inputlookup geo_attr_us_states.csv

GOCRAZY head 5

$SPLUNK_HOME/bin/python gocrazy.py



$SPLUNK_HOME/bin/python gocrazy.py

Search: Pipe results through external process

17

| inputlookup geo_attr_us_states.csv | GOCRAZY | head 5

inputlookup geo_attr_us_states.csv

head 5GOCRAZY



Recap: high-level concepts

18

Enable you to register new SPL commands, extend the language.

Allow you to intercept and modify search results during a search.
– CSV in ➞ CSV out

Implemented as a external process (i.e. a program you write).
– Typically written in Python.



Custom Commands: low-level details

19

How results are exchanged between splunkd and external process
“Types” of search commands



splunkd ⬌custom command

20

There are two “protocols” for custom commands:
– Version 1, legacy protocol used by Intersplunk.py (available since Splunk 3.0)
– Version 2, new protocol used by Python SDK (available since 6.3)
– In both protocols, all communication over stdin/stdout

Version 2 protocol
– Spawns external process once, streams results through chunk by chunk
– Simple commands.conf configuration

ê “chunked=true”
– Support for platform-specific programs

Version 1 protocol
– Spawns external process for each chunk of search results (!)
– “Transforming” commands limited to 50,000 events



Search Command protocol comparison

21

Protocol APIs Performance Scalability Simple 
configuration

Platform-
specific 
programs

Programming
languages

Version 1 
(legacy)

Intersplunk.py,
Python SDK ✘ ✘ ✘ ✘ Python

Version 2 Python SDK ✔ ✔ ✔ ✔
Python,
arbitrary
binaries



Search Command Protocol Version 2

22

• Transaction-oriented
• splunkd sends a command, external process responds with reply

• Simple bi-directional transport protocol:
• ASCII transport header
• JSON metadata payload
• CSV search results payload

• Every search starts with a “getinfo” command (capability exchange)
• Subsequently, issues “execute” commands with search results



Transport “chunk”

chunked 1.0, 22, 54
{“action”: “execute”}
_raw,a,b,c
hello,0,1,2
everyone,3,4,5
howareyou,6,7,8

Transport header
Metadata (JSON)

Data payload (CSV)

Metadata length Data length



Example: GOCRAZY

24

| inputlookup geo_attr_us_states.csv | head 5 | GOCRAZY

chunked 1.0,22,106
{“action”: “execute”}
state_code,state_fips,state_name
AL,01,Alabama
AK,02,Alaska
AZ,04,Arizona
AR,05,Arkansas
CA,06,California

$SPLUNK_HOME/bin/python
gocrazy.py

chunked 1.0,18,106
{“finished”: true}
dste_aecot,pste_asfit,mste_aenat
LA,10,aaalbmA
KA,20,laaskA
ZA,40,iaorznA
RA,50,Akaasnsr
AC,60,iCifolarna



Protocol Version 2: Transaction timeline

25

tim
e

splunkd external process

✘
…

“What kind of command
are you?”

“Hey! I’m a
streaming command!”



“getinfo” command

26

Metadata in the getinfo command sent by splunkd:
– Command arguments
– Full SPL query string
– Execution context (app, user)
– Search sid
– splunkd URI and auth token (for making REST requests)

Metadata in the custom command’s reply:
– Type of search command (streaming/stateful/reporting/etc.)
– Which fields splunkd should extract (required fields)
– Whether or not it generates results (e.g. must be first search command)



Sample “getinfo” metadata
{ 

"action": "getinfo",
"streaming_command_will_restart": false,
"searchinfo": {

"earliest_time": "0",
"raw_args": [

"LinearRegression", "petal_length", "from", "petal_width”
],
"session_key": "...",
"maxresultrows": 50000,
"args": [

"LinearRegression", "petal_length", "from", "petal_width”
],
"dispatch_dir": "/Users/jleverich/builds/conf_mlapp_demo/var/run/splunk/dispatch/1475007525.265",
"command": "fit",
"latest_time": "0",
"sid": "1475007525.265",
"splunk_version": "6.5.0",
"username": "admin",
"search": "%7C%20inputlookup%20iris.csv%20%7C%20fit%20LinearRegression%20petal_length%20from%20petal_width",
"splunkd_uri": "https://127.0.0.1:8090",
"owner": "admin",
"app": "Splunk_ML_Toolkit”

},
"preview": false

}



“execute” command

28

Metadata in execute command sent by splunkd
– Whether or not preceding commands are “finished”

Metadata in the custom command’s reply:
– Whether or not this command is “finished”

splunkd and search commands negotiate completion of search
– Both must indicate “finished” = True



Types of Search 
Commands



Types of Search Commands

“Streaming” commands

“Stateful Streaming” commands

“Transforming” commands
– “Events” commands
– “Reporting” commands



“Streaming” commands

Process search results one-by-one
– Can’t maintain global state
– Must not re-order search results

Eligible to run at Indexers
– Can run in parallel on Indexers

Examples:
– eval
– where
– rex



“Streaming” command example

32

... | eval foo=“bar” | ...

field_A field_B field_C foo

the jumps dog bar

quick over oops bar

brown the too bar

fox lazy many bar

field_A field_B field_C foo

the jumps dog bar

field_A field_B field_C foo

quick over oops bar

field_A field_B field_C foo

brown the too bar

field_A field_B field_C foo

fox lazy many bar

Remote results

Final search results

Indexers

Search 
head



“Stateful Streaming” commands

Process search results one-by-one
– Can maintain global state
– Must not re-order search results

Only run at Search Head

Examples:
– accum
– streamstats
– dedup



“Stateful Streaming” command example

34

... | accum foo | ...

field_A field_B field_C foo
the jumps dog 1
quick over oops 2
brown the too 3
fox lazy many 4

field_A field_B field_C foo
the jumps dog 1
quick over oops 1
brown the too 1
fox lazy many 1



“Events” commands

Process search results as a whole
– May re-order search results
– Typically maintain all fields in each event, especially:

ê _raw, _time, index, sourcetype, source, host

Only run at Search Head
May run several times for “preview”

Examples:
– sort
– eventstats



“Events” command example

36

... | sort field_A | ...

field_A field_B field_C foo
brown the too 3
fox lazy many 4
quick over oops 2
the jumps dog 1

field_A field_B field_C foo
the jumps dog 1
quick over oops 2
brown the too 3
fox lazy many 4



“Reporting” commands

Process search results as a whole
– Typically transform the results (e.g. aggregate, project, summarize, etc.)

Only run at Search Head
May run several times for “preview”
Results show up in the “Statistics” tab

Examples:
– stats
– timechart
– transpose



“Reporting” command example

38

... | stats count | ...

count
4

field_A field_B field_C foo
the jumps dog 1
quick over oops 2
brown the too 3
fox lazy many 4



Beware of large result sets!

39

“Events” and “Reporting” commands process results as a whole.
– May contain 1,000,000s of search results!
– Write Streaming or Stateful commands instead when possible.

Build-in capacity limits, or spill results to disk when necessary.



Streaming “pre-op”

40

Commands may specify a “pre-op” to prepend in SPL

Communicated to splunkd in getinfo metadata (streaming_preop)
Useful to parallelize computation, reduce volume of data transfer
Must be “Streaming” (i.e., may run at Indexers)

... | stats count | ... ... | prestats count | stats count | ...



Implementing Custom 
Search Commands

with the Splunk SDK 
for Python

41



Basic steps to create a search command

1. Create an “App”
2. Deploy the Python SDK for Splunk in the bin directory
3. Write a script for your Custom Search Command
4. Register your command in commands.conf
5. Restart Splunk Enterprise
6. (optional) Export the command to other apps



Create an “App”

43



Deploy the Python SDK in the bin directory

44

cd $SPLUNK_HOME/etc/apps/MyNewApp/bin

pip install -t . splunk-sdk



Write a script for your Custom Search Command

45

import sys
from splunklib.searchcommands import dispatch, StreamingCommand, Configuration

@Configuration()
class FoobarCommand(StreamingCommand):

def stream(self, records):
for record in records:

record['foo'] = 'bar'
yield record

if __name__ == "__main__":
dispatch(FoobarCommand, sys.argv, sys.stdin, sys.stdout, __name__)

$SPLUNK_HOME/etc/apps/MyNewApp/bin/foobar.py



Register your command in commands.conf

46

[foobar]
chunked=true
# filename=foobar.py ## <--- optional

$SPLUNK_HOME/etc/apps/MyNewApp/default/commands.conf



Restart Splunk Enterprise

47

$SPLUNK_HOME/bin/splunk restart



Export to other apps (optional)

48



Export to other apps (optional)

49



Export to other apps (optional)

50



Example Streaming Command

51

import sys
from splunklib.searchcommands import dispatch, StreamingCommand, Configuration

@Configuration()
class ExStreamCommand(StreamingCommand):

def stream(self, records):
for record in records:

record['foo'] = 'bar'
yield record

if __name__ == "__main__":
dispatch(ExStreamCommand, sys.argv, sys.stdin, sys.stdout, __name__)

$SPLUNK_HOME/etc/apps/MyNewApp/bin/exstream.py



Example Stateful Streaming Command

52

import sys
from splunklib.searchcommands import dispatch, StreamingCommand, Configuration

@Configuration(local=True)
class ExStatefulCommand(StreamingCommand):

def stream(self, records):
for record in records:

record['foo'] = 'bar'
yield record

if __name__ == "__main__":
dispatch(ExStatefulCommand, sys.argv, sys.stdin, sys.stdout, __name__)

$SPLUNK_HOME/etc/apps/MyNewApp/bin/exstateful.py



Example Events Command

53

import sys
from splunklib.searchcommands import dispatch, EventingCommand, Configuration

@Configuration()
class ExEventsCommand(EventingCommand):

def transform(self, records):
l = list(records)
l.sort(key=lambda r: r['_raw'])
return l

if __name__ == "__main__":
dispatch(ExEventsCommand, sys.argv, sys.stdin, sys.stdout, __name__)

$SPLUNK_HOME/etc/apps/MyNewApp/bin/exevents.py



Example Reporting Command

54

import sys
from splunklib.searchcommands import dispatch, ReportingCommand, Configuration

@Configuration()
class ExReportCommand(ReportingCommand):

@Configuration()
def map(self, records):

return records

def reduce(self, records):
count = 0
for r in records:

count += 1
return [{'count': count}]

if __name__ == "__main__":
dispatch(ExReportCommand, sys.argv, sys.stdin, sys.stdout, __name__)

$SPLUNK_HOME/etc/apps/MyNewApp/bin/exreport.py



A little advice

55

Custom commands are programs that run on Splunk instances

–BEWARE UNVALIDATED INPUT!
– Sanitize user arguments AND search results

Use role-based access control to
restrict access

Be prepared to handle 1,000,000s
of events

Be excellent to each other.



What Now? 

56

https://github.com/splunk/splunk-sdk-python
– https://github.com/splunk/splunk-sdk-python/tree/master/examples/searchcommands_app

Dev Portal Documentation
– http://dev.splunk.com/view/python-sdk/SP-CAAAEU2

Contact: Developer Ecosystem Team <devinfo@splunk.com>



© 2017  SPLUNK INC.

Don't forget to rate this session in the 
.conf2017 mobile app

Thank You



Q&A



Backup Slides



Streaming Commands only serialize required fields

Internal result set
_raw,_time,_cd,_indextime,...,fieldX
a,1400000000,x:y,1400000010,...,BOB
a,1400000001,x:y,1400000011,...,JIM
a,1400000002,x:y,1400000012,...,BOB
a,1400000003,x:y,1400000013,...,JIM
a,1400000004,x:y,1400000014,...,JIM
a,1400000005,x:y,1400000015,...,BOB
a,1400000006,x:y,1400000016,...,JIM
a,1400000007,x:y,1400000017,...,BOB
a,1400000008,x:y,1400000018,...,BOB
a,1400000009,x:y,1400000019,...,JIM

External result set
_chunked_idx,fieldX
0,BOB
1,JIM
2,BOB
3,JIM
4,JIM
5,BOB
6,JIM
7,BOB
8,BOB
9,JIM

{“required_fields”: [“fieldX”], …}



“Right outer-join” on required fields

Result set

Result set id
x

Sl
ic

e

N
ew

 fi
el

d

Result set
N

ew
 fi

el
d

+

To external process

id
x

In splunkd
• Supports

– Removing events
– Adding events
– Editing fields
– Adding fields

• Can’t re-order events



Performance comparison

0

20

40

60

80

100

120

140

160

180

Echo Echo (CSV) Echo 
(selected)

| where

R
un

tim
e 

(s
ec

on
ds

)

Splunk
Protocol v1
Protocol v2

2.5 million events



“Streaming” command example

63

... | eval foo=“bar” | ...

field_A field_B field_C
the jumps dog
quick over oops
brown the too
fox lazy many

field_A field_B field_C foo
the jumps dog bar
quick over oops bar
brown the too bar
fox lazy many bar


