
Splunk Performance
Observations and Recommendations

Simeon Yep | AVP GSA
Brian Wooden | GSA Partner Integrations
2017-09-27 | Washington, DC

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

▶ Performance & Bottlenecks
• The BBQ Analogy

▶ Indexing
• Index-time Pipelines
• Indexing Tests

▶ Searching
• Without and With Indexing Load
• Search Types
• Mixed Workload Impacts

▶ Metric Store

Agenda

▶ Arbitrary Datasets Used
▶ “Dedicated/Isolated” Lab Testing

Testing Caveats
Do Not Take Results Out of Context

▶ If we remove one bottleneck another
will emerge

▶ Let’s get cooking

My Splunk is Slow
I knew I should have used SSD

© 2017 SPLUNK INC.

-The one they call D

“Splunk, like all distributed computing
systems, has various bottlenecks that

manifest themselves differently
depending on workloads being

processed.”

Identifying performance bottlenecks

Understand data flows
• Splunk operations pipelines
Instrument
• Capture metrics for relevant operations
Run tests
Draw conclusions
• Chart and table metrics, looks for

emerging patterns
Make recommendations

7

Splunk	>

data

Ingest (Indexing)

Consume (Search)

Indexing
Pipelines, queues, and tests

Put that in your pipeline and process it

9

Input UTF-8	Converter Line	Breaker Header	
Extraction Output

Splunk data flows thru several such pipelines before it gets indexed

Pipeline	
Data

Lots of pipelines

10

TRANSFORMS-xxx
SEDCMD
ANNOTATE_PUNCT

LINE_BREAKER
TRUNCATE

SHOULD_LINEMERGE
BREAK_ONLY_BEFORE
MUST_BREAK_AFTER
TIME_*

Index-time processing

11

Event
Breaking

Timestamp
Extraction

Typing

LINE_BREAKER <where to break the stream>
SHOULD_LINEMERGE <enable/disable merging>
MAX_TIMESTAMP_LOOKAHEAD <# chars in to look for ts>
TIME_PREFIX <pattern before ts>
TIME_FORMAT <strptime format string to extract ts>

ANNOTATE_PUNCT <enable/disable punct:: extraction>

Testing: dataset A

12

10M syslog-like events:
. . .
08-24-2016 15:55:39.534 <syslog message >
08-24-2016 15:55:40.921 <syslog message >
08-24-2016 15:55:41.210 <syslog message >
. . .

Push	data	thru:	
– Parsing	>	Merging	>	Typing	Pipelines	

ê Skip	Indexing
– Tweak	various	props.conf settings

Measure MLA: MAX_TIMESTAMP_LOOKAHEAD = 24
LM: SHOULD_LINEMERGE = false
TF: TIME_FORMAT = %m-%d-%Y %H:%M:%S.%3N
DC: DATETIME_CONFIG = CURRENT

Index-time pipeline results

13

Time (s)

5.8

6.3

8.6

9.5

0 1 2 3 4 5 6 7 8 9 10

LM+DC

LM+TF

MLA

Default

time (s)

MLA: MAX_TIMESTAMP_LOOKAHEAD = 24
LM: SHOULD_LINEMERGE = false
TF: TIME_FORMAT = %m-%d-%Y %H:%M:%S.%3N
DC: DATETIME_CONFIG = CURRENT

14

Time (s)
Performance

Fl
ex

ib
ilit

y
• All pre-indexing pipelines are

expensive at default settings.
• Price of flexibility

• If you’re looking for
performance, minimize
generality

• LINE_BREAKER
• SHOULD_LINEMERGE
• MAX_TIMESTAMP_LOOKAHEAD
• TIME_PREFIX
• TIME_FORMAT

Next: let’s index a dataset B

15

Generate a much larger dataset (1TB)
– High cardinality, ~380 Bytes/event, 2.9B events

Forward to indexer as fast as possible
– Indexer:

ê Linux 2.6.32 (CentOS);
ê 2x12 Xeon 2.30 GHz (HT enabled)
ê 8x300GB 15k RPM drives in RAID-0

– No other load on the box

Measure

Indexing: CPU and IO

16

Indexing Test Findings

17

CPU Utilization
– ~17.6% in this case, 4-5 Real CPU Cores

IO Utilization
– Characterized by both reads and writes but not as demanding as search. Note the splunk-

optimize process.

Ingestion Rate
– 30MB/s
– “Speed of Light” – no search load present on the server

Index Pipeline Parallelization

18

Splunk 6.3+ introduced multiple independent pipelines sets
ê i.e. same as if each set was running on its own indexer

If machine is under-utilized (CPU and I/O), you can configure the indexer to
run 2 such sets.
Achieve roughly double the indexing throughput capacity.
Try not to set over 2
Be mindful of associated resource consumption

Indexing Test Conclusions

19

Distribute as much as you can
– Splunk scales horizontally
– Enable more pipelines but be aware of compute tradeoff
Tune event breaking and timestamping attributes in
props.conf whenever possible
Faster disk (ex. SSDs) will not generally improve indexing
throughput by meaningful amount
Faster (not more) CPUs would have improved indexing
throughput
– multiple pipelines would need more CPUs

Search
Types & Tests

Searching

21

Real-life search workloads are complex and varied
– Difficult to encapsulate every organization’s needs into one neat profile

Yet we can generate arbitrary workloads covering a wide range of resource
utilization and profile those
– Actual profile will fall somewhere in between.

IO CPU

Search pipeline boundedness

22

Some
preparatory
steps here

Write temporary
results to
dispatch
directory

Find buckets
based on search

timerange

Repeat until search completes
For each bucket
check tsidx for

events that
match LISPY

and find rawdata
offset

Filter events to
match the search

string (+
eventtyping

tagging)

Process events:
st rename,

extract, report,
kv, alias, eval,

lookup,
subsecond

Return progress
to SH splunkd

IO

For each bucket
read journal.gz

at offsets
supplied by

previous step

Search pipeline (High Level)

23

Some
preparatory
steps here

Write temporary
results to
dispatch
directory

Find buckets
based on search

timerange

Return progress
to SH splunkd

Repeat until search completes
For each bucket
check tsidx for

events that
match LISPY

and find rawdata
offset

For each bucket
read journal.gz

at offsets
supplied by

previous step

Filter events to
match the search

string (+
eventtyping

tagging)

Process events:
st rename,

extract, report,
kv, alias, eval,

lookup,
subsecond

Search pipeline boundedness

24

Some
preparatory
steps here

Write temporary
results to
dispatch
directory

Find buckets
based on search

timerange

Repeat until search completes

Filter events to
match the search

string (+
eventtyping

tagging)

Process events:
st rename,

extract, report,
kv, alias, eval,

lookup,
subsecond

IO CPU + Memory
Return progress
to SH splunkd

For each bucket
check tsidx for

events that
match LISPY

and find rawdata
offset

For each bucket
read journal.gz

at offsets
supplied by

previous step

Search Types

25

Dense
– Characterized predominantly by returning many events per bucket

index=web | stats count by clientip

Sparse
– Characterized predominantly by returning some events per bucket

index=web some_term | stats count by clientip

Rare
– Characterized predominantly by returning only a few events per index

index=web url=onedomain* | stats count by clientip

Okay, let’s test some searches

26

Use our already indexed data
– It contains many unique terms with predictable term density

Search under several term densities and concurrencies
– Term density: 1/100, 1/1M, 1/100M
– Search Concurrency: 4 – 60
– Searches:

ê Rare: over all 1TB dataset
ê Dense: over a preselected time range

Repeat all of the above while under an indexing workload
Measure

Dense Searches

27

Hitting 100%
CPU at

core#=concurren
cy

CPU Utilization (%)

IO Wait (%)

28

CPU Utilization (%)

Hitting 100% earlier

Indexing Throughput (KB/s)

Indexing with Dense Searches

Search Duration (s)

Indexing Only

Dense Searches Summary

29

Dense workloads are CPU bound
Dense workload completion times and indexing throughput both negatively
affected while running simultaneously
Faster disk wont necessarily help as much here
– Majority of time in dense searches is spent in CPU decompressing rawdata + other SPL

processing

Faster and more CPUs would have improved overall performance

Rare Searches

30

Reads/s (from sar)

IO Wait (%)

CPU Utilization (%)

Indexing with Rare Searches

31

IO Wait (%)

Reads/s (from sar)

CPU Utilization (%)

Indexing & Searching Rare

32

Indexing Only

Search Duration (s)

Indexing Throughput (KB/s)

Search Duration (s)

Rare Searches Summary

33

Rare workloads (investigative, ad-hoc) are IO bound
Rare workload completion times and indexing throughput both negatively affected
while running simultaneously
1/100M searches have a lesser impact on IO than 1/1M.
When indexing is on, in 1/1M case search duration increases substantially more vs.
1/100M. Search and indexing are both contenting for IO.
In case of 1/100M, bloomfilters help improve search performance
– Bloomfilters are special data structures that indicate with 100% certainty that a term does not

exist in a bucket (indicating to the search process to skip that bucket).

Faster disks would have definitely helped here
More CPUs would not have improved performance by much

Is my search CPU or IO bound?

34

Guideline in absence of full instrumentation
command.search.rawdata ~ CPU Bound
– Others: .kv, .typer, .calcfields,

command.search.index ~ IO Bound

Metric Store
Types & Tests

Metric Store Performance
Query Response Times Metrics vs Events

360M events, 10 hosts, 87 distinct metrics

Metric Store Performance
Ingestion

HTTP Endpoint (AKA HTTP Event Collector, HEC)
– ~55,000 EPS / indexer sans search load
– Scales nearly linearly

UDP
– Varies
– 33% packet loss at 10,000 EPS

Top	Takeaways

38

• Indexing	
– Distribute	– Splunk	scales	horizontally
– Tune	event	breaking	and	timestamp	extraction	
– Faster CPUs	will	help	with	indexing	performance

• Searching
– Distribute	– Splunk	scales	horizontally	
– Dense	Search	Workloads
ê CPU	Bound, better with indexing than rare
workloads

ê Faster	and	more	CPUs	will	help
– Rare	Search	Workloads
ê IO	Bound,	not	that	great	with	indexing	
ê Bloomfilters help significantly
ê Faster	disks	will	help

• Performance
– Avoid generality, optimize for expected case and add

hardware whenever you can

Term
Density

CPU

IO

Use case What
Helps?

Trending, reporting
over long term etc.

More distribution
Faster, more CPUs

Ad-hoc analysis,
investigative type

More distribution
Faster Disks, SSDs

Testing Disclaimer Reminder

1. Testing conducted on arbitrary
datasets

2. “closed course” (lab) environment
3. Not to be interpreted out of context

39

Q&A
Simeon Yep | AVP GSA

Brian Wooden | Partner Integrations

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

