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Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.



▶ Performance & Bottlenecks
• The BBQ Analogy

▶ Indexing
• Index-time Pipelines
• Indexing Tests

▶ Searching
• Without and With Indexing Load
• Search Types
• Mixed Workload Impacts

▶ Metric Store

Agenda



▶ Arbitrary Datasets Used
▶ “Dedicated/Isolated” Lab Testing

Testing Caveats
Do Not Take Results Out of Context



▶ If we remove one bottleneck another 
will emerge

▶ Let’s get cooking

My Splunk is Slow
I knew I should have used SSD
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-The one they call D 

“Splunk, like all distributed computing 
systems, has various bottlenecks that 

manifest themselves differently 
depending on workloads being 

processed.”



Identifying performance bottlenecks

Understand data flows 
• Splunk operations pipelines
Instrument
• Capture metrics for relevant operations  
Run tests
Draw conclusions
• Chart and table metrics, looks for 

emerging patterns 
Make recommendations 
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Splunk	>

data

Ingest        (Indexing)  

Consume        (Search)



Indexing
Pipelines, queues, and tests



Put that in your pipeline and process it
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Input UTF-8	Converter Line	Breaker Header	
Extraction Output

Splunk data flows thru several such pipelines before it gets indexed 

Pipeline	
Data



Lots of pipelines
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TRANSFORMS-xxx
SEDCMD
ANNOTATE_PUNCT

LINE_BREAKER
TRUNCATE

SHOULD_LINEMERGE
BREAK_ONLY_BEFORE
MUST_BREAK_AFTER
TIME_*



Index-time processing
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Event 
Breaking

Timestamp 
Extraction

Typing

LINE_BREAKER <where to break the stream>
SHOULD_LINEMERGE <enable/disable merging>
MAX_TIMESTAMP_LOOKAHEAD <# chars in to look for ts>
TIME_PREFIX <pattern before ts>
TIME_FORMAT <strptime format string to extract ts>

ANNOTATE_PUNCT <enable/disable punct:: extraction>



Testing: dataset A
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10M syslog-like events: 
. . . 
08-24-2016 15:55:39.534 <syslog message >
08-24-2016 15:55:40.921 <syslog message >
08-24-2016 15:55:41.210 <syslog message >
. . .

Push	data	thru:	
– Parsing	>	Merging	>	Typing	Pipelines	

ê Skip	Indexing
– Tweak	various	props.conf settings

Measure MLA: MAX_TIMESTAMP_LOOKAHEAD = 24
LM:  SHOULD_LINEMERGE = false
TF:  TIME_FORMAT = %m-%d-%Y %H:%M:%S.%3N 
DC:  DATETIME_CONFIG = CURRENT   



Index-time pipeline results 
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Time (s)
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MLA: MAX_TIMESTAMP_LOOKAHEAD = 24
LM:  SHOULD_LINEMERGE = false
TF:  TIME_FORMAT = %m-%d-%Y %H:%M:%S.%3N 
DC:  DATETIME_CONFIG = CURRENT   
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Time (s)
Performance

Fl
ex
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ilit

y
• All pre-indexing pipelines are 

expensive at default settings. 
• Price of flexibility 

• If you’re looking for 
performance, minimize 
generality 

• LINE_BREAKER
• SHOULD_LINEMERGE
• MAX_TIMESTAMP_LOOKAHEAD
• TIME_PREFIX
• TIME_FORMAT



Next: let’s index a dataset B
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Generate a much larger dataset (1TB)
– High cardinality, ~380 Bytes/event, 2.9B events

Forward to indexer as fast as possible
– Indexer:

ê Linux 2.6.32 (CentOS); 
ê 2x12 Xeon 2.30 GHz (HT enabled) 
ê 8x300GB 15k RPM drives in RAID-0

– No other load on the box

Measure



Indexing: CPU and IO
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Indexing Test Findings
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CPU Utilization
– ~17.6% in this case, 4-5 Real CPU Cores

IO Utilization 
– Characterized by both reads and writes but not as demanding as search. Note the splunk-

optimize process.

Ingestion Rate
– 30MB/s
– “Speed of Light” – no search load present on the server



Index Pipeline Parallelization
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Splunk 6.3+ introduced multiple independent pipelines sets 
ê i.e. same as if each set was running on its own indexer 

If machine is under-utilized (CPU and I/O), you can configure the indexer to 
run 2 such sets. 
Achieve roughly double the indexing throughput capacity. 
Try not to set over 2
Be mindful of associated resource consumption 



Indexing Test Conclusions
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Distribute as much as you can
– Splunk scales horizontally
– Enable more pipelines but be aware of compute tradeoff 
Tune event breaking and timestamping attributes in 
props.conf whenever possible
Faster disk (ex. SSDs) will not generally improve indexing 
throughput by meaningful amount
Faster (not more) CPUs would have improved indexing 
throughput 
– multiple pipelines would need more CPUs



Search
Types & Tests



Searching
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Real-life search workloads are complex and varied
– Difficult to encapsulate every organization’s needs into one neat profile

Yet we can generate arbitrary workloads covering a wide range of resource 
utilization and profile those
– Actual profile will fall somewhere in between. 

IO CPU



Search pipeline boundedness
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Some 
preparatory 
steps here

Write temporary 
results to 
dispatch 
directory

Find buckets 
based on search 

timerange

Repeat until search completes
For each bucket 
check tsidx for 

events that 
match LISPY 

and find rawdata
offset

Filter events to 
match the search 

string (+ 
eventtyping

tagging)

Process events: 
st rename, 

extract, report, 
kv, alias, eval, 

lookup, 
subsecond

Return progress 
to SH splunkd

IO

For each bucket 
read journal.gz

at offsets 
supplied by 

previous step



Search pipeline (High Level)
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Some 
preparatory 
steps here

Write temporary 
results to 
dispatch 
directory

Find buckets 
based on search 

timerange

Return progress 
to SH splunkd

Repeat until search completes
For each bucket 
check tsidx for 

events that 
match LISPY 

and find rawdata
offset

For each bucket 
read journal.gz

at offsets 
supplied by 

previous step

Filter events to 
match the search 

string (+ 
eventtyping

tagging)

Process events: 
st rename, 

extract, report, 
kv, alias, eval, 

lookup, 
subsecond



Search pipeline boundedness
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Some 
preparatory 
steps here

Write temporary 
results to 
dispatch 
directory

Find buckets 
based on search 

timerange

Repeat until search completes

Filter events to 
match the search 

string (+ 
eventtyping

tagging)

Process events: 
st rename, 

extract, report, 
kv, alias, eval, 

lookup, 
subsecond

IO CPU + Memory
Return progress 
to SH splunkd

For each bucket 
check tsidx for 

events that 
match LISPY 

and find rawdata
offset

For each bucket 
read journal.gz

at offsets 
supplied by 

previous step



Search Types
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Dense
– Characterized predominantly by returning many events per bucket

index=web | stats count by clientip

Sparse
– Characterized predominantly by returning some events per bucket

index=web some_term | stats count by clientip

Rare
– Characterized predominantly by returning only a few events per index

index=web url=onedomain* | stats count by clientip



Okay, let’s test some searches

26

Use our already indexed data 
– It contains many unique terms with predictable term density

Search under several term densities and concurrencies  
– Term density: 1/100, 1/1M, 1/100M
– Search Concurrency: 4 – 60
– Searches: 

ê Rare: over all 1TB dataset
ê Dense: over a preselected time range 

Repeat all of the above while under an indexing workload
Measure



Dense Searches
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Hitting 100% 
CPU at 

core#=concurren
cy

CPU Utilization (%)

IO Wait (%) 
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CPU Utilization (%) 

Hitting 100% earlier

Indexing Throughput (KB/s)

Indexing with Dense Searches

Search Duration (s)

Indexing Only



Dense Searches Summary
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Dense workloads are CPU bound 
Dense workload completion times and indexing throughput both negatively 
affected while running simultaneously 
Faster disk wont necessarily help as much here
– Majority of time in dense searches is spent in CPU decompressing rawdata + other SPL 

processing

Faster and more CPUs would have improved overall performance



Rare Searches
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Reads/s (from sar)

IO Wait (%)

CPU Utilization (%)



Indexing with Rare Searches
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IO Wait (%)

Reads/s (from sar)

CPU Utilization (%)



Indexing & Searching Rare
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Indexing Only

Search Duration (s)

Indexing Throughput (KB/s)

Search Duration (s)



Rare Searches Summary
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Rare workloads (investigative, ad-hoc) are IO bound 
Rare workload completion times and indexing throughput both negatively affected 
while running simultaneously 
1/100M searches have a lesser impact on IO than 1/1M. 
When indexing is on, in 1/1M case search duration increases substantially more vs. 
1/100M. Search and indexing are both contenting for IO. 
In case of 1/100M, bloomfilters help improve search performance
– Bloomfilters are special data structures that indicate with 100% certainty that a term does not 

exist in a bucket (indicating to the search process to skip that bucket). 

Faster disks would have definitely helped here
More CPUs would not have improved performance by much



Is my search CPU or IO bound?
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Guideline in absence of full instrumentation 
command.search.rawdata ~ CPU Bound
– Others: .kv, .typer, .calcfields, 

command.search.index ~ IO Bound



Metric Store
Types & Tests



Metric Store Performance
Query Response Times Metrics vs Events

360M events, 10 hosts, 87 distinct metrics



Metric Store Performance
Ingestion

HTTP Endpoint (AKA HTTP Event Collector, HEC)
– ~55,000 EPS / indexer sans search load
– Scales nearly linearly 

UDP
– Varies
– 33% packet loss at 10,000 EPS



Top	Takeaways
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• Indexing	
– Distribute	– Splunk	scales	horizontally
– Tune	event	breaking	and	timestamp	extraction	
– Faster CPUs	will	help	with	indexing	performance

• Searching
– Distribute	– Splunk	scales	horizontally	
– Dense	Search	Workloads
ê CPU	Bound, better with indexing than rare 
workloads

ê Faster	and	more	CPUs	will	help
– Rare	Search	Workloads
ê IO	Bound,	not	that	great	with	indexing	
ê Bloomfilters help significantly
ê Faster	disks	will	help

• Performance
– Avoid generality, optimize for expected case and add 

hardware whenever you can

Term 
Density

CPU

IO

Use case What 
Helps?

Trending, reporting 
over long term etc.

More distribution 
Faster, more CPUs

Ad-hoc analysis,
investigative type 

More distribution
Faster Disks, SSDs



Testing Disclaimer Reminder

1. Testing conducted on arbitrary 
datasets

2. “closed course” (lab) environment
3. Not to be interpreted out of context
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Q&A
Simeon Yep  |  AVP GSA

Brian Wooden  |  Partner Integrations



© 2017  SPLUNK INC.

Don't forget to rate this session in the 
.conf2017 mobile app

Thank You


