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Search Head 
Clustering Overview

What is Search Head Clustering?



Search Head Clustering 

Ability to group search heads into a cluster in order  to provide   
Highly Available and Scalable search services

MISSION 
CRITICAL
ENTERPRISE



Horizontal Scaling 

Always-on Search 
Services 

Consistent User 
Experience

Easy to add / manage 
premium contents (apps)

Business Benefits of SHC



Clustering
Internals
How does SHC work?
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1. Group search heads into a cluster (Horizontal scaling)
2. Captain gets elected dynamically (No Single point failure)
3. User created reports/dashboards automatically replicated to other search 

heads  (Consistent Configuration)

2

3

SHC – How Does It Work?



Search Head Cluster Bring Up

1. Bootstrap captain
2. Bring-up members
3. Captain establishes authority
4. Members join/register
5. CLI based cluster scale/shrink

captain

config-log
{s1,s2, .., sn}

...

members



Dynamic Captain & Auto Failover

▶︎ Raft Consensus Protocol 
from Stanford
• Diego Ongaro & John Osterhout

▶︎ SHC uses RAFT for LE and 
Auto Failover

new captain
...

members

old captain

artifacts
running jobs

alerts, etc
search load

Fixups



Controlling Captaincy

▶︎ Captain Switching should be extremely rare
▶︎ Repair a problem by transfer captain without restarts!!!
▶︎ Rolling-restart from the captain maintains the node as captain after restarts
▶︎ Captain preference added for members
▶︎ Disaster Recovery using static captaincy



Best Practices

12

▶︎ Add only fresh instances, if a node is re-purposed use “splunk clean all”
▶︎ High availability requires a minimum of 3 members
▶︎ All search heads on homogenous hardware and at same version
▶︎ Number of instances >= replication_factor
▶︎ Admin needs to manually do “splunk remove shcluster-member” on captain 

to remove a dead node
▶︎ Multi-site clusters to have majority nodes at one site



Distributed 
Scheduling

How jobs are scheduled in SHC?



• Captain is job scheduler
• Eliminates need for a job-server 
• Job distribution based on round 

robin or load-based heuristic

captain

scheduler

...
Search 1

search 2

LOAD

SUCC

FAIL

load 
balancer

search -3 

Job Scheduling Orchestration



▶︎ Auto-failover – New captain becomes scheduler
▶︎ captain_is_adhoc_searchhead knob to reduce captain load
▶︎ Captain updates RA/DM summaries on indexers.
▶︎ Scheduler limits honored across the cluster
▶︎ Real time scheduled searches run one instance across cluster
▶︎ Centralized user quota Management*

Job Scheduling



High Availability Of Search Results

▶︎ Artifacts are replicated across the SH members
▶︎ Adhoc searches are not replicated
▶︎ At least replication_factor number of nodes should be in UP state for 

enforcing replication policy
▶︎ Replicated directory starts with “rsa_<sid>” in the dispatch directory
▶︎ Captain orchestrates reaping of search artifacts from dispatch directory 

of all members
▶︎ An artifact is served based on availability from (1) itself,  (2) search 

originating node, (3) captain 



▶︎ Captain maintains a global view of alerts and suppressions and updates the 
list to all members

▶︎ Captain registers all the adhoc searches run in the cluster
▶︎ Captain orchestrates reaping of search artifact replicas 
▶︎ GET /services/search/jobs requests on any member will proxy to captain to 

get complete jobs

Centralized Cluster State



Configuration 
Management

How are dynamic changes to SHC kept consistent?  



Configuration Files

▶︎ Goals
• Consistent user experience across all search heads
• Changes made on one member are reflected on all members

▶︎ Types of Configuration Files
• custom user content

• reports
• dashboards

• search-time knowledge
• field extractions
• event types
• macros

• system configurations
• inputs, forwarding, authentication



Configuration Changes

▶︎ Users customize search and UI configurations via UI/CLI/REST
• save report
• add panel to dashboards
• create field extraction

▶︎ Administrators modify system configurations
– configure forwarding
– deploy centralized authentication (e.g. LDAP)
– install entirely new app or hand-edited configuration



Search And UI Configurations

▶︎ Goal: Eventual Consistency
▶︎ Changes to search and UI configurations are replicated across the search 

head cluster automatically



Conf Replication - Workflow

my_dashboard.xml

C



Conf Replication – Progress Check

▶︎ captain keeps track of the conf replication progress of each SHC member 

https://localhost:11089 18bc830e3087301900bdf2a30dc1a67bf8
318ced: Tue Jul 19 15:32:56 2016

https://localhost:8089 18bc830e3087301900bdf2a30dc1a67bf8
318ced: Tue Jul 19 15:32:52 2016

https://localhost:8189 dc4a991d168ae746f27979212253d6fb95
9fc92c: Fri Jul 1 13:51:05 2016

https://localhost:9089 CaptainDummyOpId: Tue Jul 19 
15:32:09 2016



Bundle Replication
How are system-wide changes kept consistent?



System Configurations

▶︎ Recall: only changes to search and UI configurations are replicated across the 
search head cluster automatically

▶︎ Changes to system configurations are not replicated automatically because of 
their high potential impact

▶︎ How are system configurations kept consistent, then?



▶︎ Deployer: a single, well-controlled instance outside of the cluster
▶︎ Configurations should be tested on dev/QA instances prior to deploy

D

Configuration Deployment



A B C

Deployer

Bundle Push

/etc/shcluster/app1: No Changes
/etc/shcluster/app2: Updated
/etc/shcluster/user:  Updated

/etc/app2 /etc/app2: /etc/app2

/etc/user
/etc/user

/etc/user

Captain

Idx1: 
KB cksum1
KB cksum2

Idx2: 
KB cksum1
KB cksum2

Idx3: 
KB cksum1
KB cksum2

Idx4: 
KB cksum1
KB cksum2

All apps and config are 
shipped to the SHs in the 
initial deployer push

1

Only updated apps and 
updated user config is 
pushed on subsequent 
bundle push

2

App configuration 
is propagated to 
all SHC members

3

Periodically, captain checks 
for new bundles and 
propagates the bundles to 
the indexers

5

User configuration is sent 
to the captain and then 
replicated to remaining 
SHC members

4

Bundle Push



Bundle Replication

A B C
Captain

Idx1: cksum2
Idx2: cksum2

Search: cksum2

Idx3: KB cksum3 Idx4: KB cksum3

Idx1: 
KB cksum1
KB cksum2

Idx2: 
KB cksum1
KB cksum2

Idx3: 
KB cksum1
KB cksum2

Idx4: 
KB cksum1
KB cksum2

Captains delegates a 
scheduled search on 
SH B

3

SH B  determines the 
latest KB shared across 
peers (cksum2)

4

Indexers use the 
knowledge bundle 
(ckum2) included in 
search request

7

Search request is 
issued with common 
bundle checksum 
(cksum2)

6

SH periodically contacts CM to 
grab generation and peer set 
information. It tracks/reads 
async the latest  common 
knowledge bundle  across the 
peers

2

Each bundle push 
includes a KB cksum, 
when it is sent to the 
indexers

1

If indexers do not have a common bundle
• Best Effort Search uses common bundle 

across the the largest subset of indexers 
and excludes the other indexers

• Otherwise – a synchronous bundle 
replication is kicked off prior to search

5

Idx3: cksum3



▶︎ Deployer merges default and local app configuration during migration
▶︎ Post migration, users cannot perform certain operations on app settings like 

delete, move or unshare since default settings  are immutable by a user
▶︎ Tip: Exclude default (ex: search) apps during migration to avoid overwrite. 

Migrate any custom settings in default apps by moving them to a new app

SH->SHC Migration

A B C

Deployer

Bundle Push

/etc/app1 /etc/app1 /etc/app1

Captain

/etc/app1/default/dashboard1.xml
/etc/app1/local/dashboard2.xml

Single Search Head
/shcluster/etc/app1/etc/shcluster/app1/default/dashboard1

/etc/shcluster/app1/local/dashboard2

Deployer

/etc/app1/default/dashboard1.xml
/etc/app1/default/dashboard2.xml

SHC Members



Recent  Additions
What’s New in SHC?



SHC Health Checker

Goal: Improve diagnosability with actionable information 

▶︎ High level cluster health assessment
▶︎ Display node status 

• Captain/member
• Heartbeat status
• Uptime
• Local unpublished conf changes

▶︎ Determine conf replication baseline consistentcy
▶︎ Expose search concurrency limits (running/capacity)



Conf Replication - Health Check



Resilient Conf Replication
▶︎ Higher resiliency to ensure continuous replication of knowledge objects across 

the SHC members
• Conf replication failures when JSON string exceeds 512KB
• Long file path (>255 characters) leading to snapshot creation failure
• Large lookups files may block configuration push from the members
• Accelerated baseline match using bloom filters to find the common baseline

▶︎ Intelligent captain selection
• Prevent out-of-sync SHC member from becoming captain



▶︎ Delta bundle push to indexers on lookup deletes at runtime
• Trigger delta bundle replication when conf objects are deleted

▶︎ Deployer directs first bundle push to the Captain node
• Pushing to to captain enables faster bundle push down to the indexers

▶︎ Replicate option for lookup replication across SHC members
• replicate = true|false in transforms.conf

•True: lookup table is replicated to indexers, 
•False: lookup table is only replicated within SHC and not to the indexers

• Avoids limitation of not replicating outputcsv (used to capture search results)
• Use outputlookup to create a new csv file and replicate to SH and indexers as needed
• Target usecase is ESTracker tables, that are replicated to only to SHC members

▶︎ Support MV fields in outputlookup

Bundle Push/Replication Improvements



Captain is Node2Actions

▶︎ New SHC UI available from any of the SHC members
▶︎ Enabled only in SHC environments
▶︎ Enables admins to run cluster operations (rolling restart, captain transfer)
▶︎ More functionality to come in upcoming releases

SHC Manager UI
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1. SHC provides always-on search services 
and consistent user experience

2. Enable SHC for horizontal scalability

3. Recent additions: SHC health check 
(6.5), Increased conf replication resiliency 
(6.6), SHC manager UI (6.6)

Key 
Takeaways 
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Don't forget to rate this session in the 
.conf2017 mobile app

Thank You


