
Search Head Clustering 
Basics To Best Practices

Bharath Aleti |  Product Manager, Splunk
Manu Jose  |  Sr. Software Engineer, Splunk

September 2017  |  Washington, DC



During the course of this presentation, we may make forward-looking statements regarding future events or 
the expected performance of the company. We caution you that such statements reflect our current 
expectations and estimates based on factors currently known to us and that actual events or results could 
differ materially. For important factors that may cause actual results to differ from those contained in our 
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live 
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate 
information. We do not assume any obligation to update any forward looking statements we may make. In 
addition, any information about our roadmap outlines our general product direction and is subject to change 
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract 
or other commitment. Splunk undertakes no obligation either to develop the features or functionality 
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in 
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.



▶︎ What is Search Head Clustering?
▶︎ Clustering Internals
▶︎ Distributed Scheduling
▶︎ Configuration Management
▶︎ Bundle Replication
▶︎ What’s New in SHC

Agenda



Search Head 
Clustering Overview

What is Search Head Clustering?



Search Head Clustering 

Ability to group search heads into a cluster in order  to provide   
Highly Available and Scalable search services

MISSION 
CRITICAL
ENTERPRISE



Horizontal Scaling 

Always-on Search 
Services 

Consistent User 
Experience

Easy to add / manage 
premium contents (apps)

Business Benefits of SHC



Clustering
Internals
How does SHC work?



1

1. Group search heads into a cluster (Horizontal scaling)
2. Captain gets elected dynamically (No Single point failure)
3. User created reports/dashboards automatically replicated to other search 

heads  (Consistent Configuration)

2

3

SHC – How Does It Work?



Search Head Cluster Bring Up

1. Bootstrap captain
2. Bring-up members
3. Captain establishes authority
4. Members join/register
5. CLI based cluster scale/shrink

captain

config-log
{s1,s2, .., sn}

...

members



Dynamic Captain & Auto Failover

▶︎ Raft Consensus Protocol 
from Stanford
• Diego Ongaro & John Osterhout

▶︎ SHC uses RAFT for LE and 
Auto Failover

new captain
...

members

old captain

artifacts
running jobs

alerts, etc
search load

Fixups



Controlling Captaincy

▶︎ Captain Switching should be extremely rare
▶︎ Repair a problem by transfer captain without restarts!!!
▶︎ Rolling-restart from the captain maintains the node as captain after restarts
▶︎ Captain preference added for members
▶︎ Disaster Recovery using static captaincy



Best Practices

12

▶︎ Add only fresh instances, if a node is re-purposed use “splunk clean all”
▶︎ High availability requires a minimum of 3 members
▶︎ All search heads on homogenous hardware and at same version
▶︎ Number of instances >= replication_factor
▶︎ Admin needs to manually do “splunk remove shcluster-member” on captain 

to remove a dead node
▶︎ Multi-site clusters to have majority nodes at one site



Distributed 
Scheduling

How jobs are scheduled in SHC?



• Captain is job scheduler
• Eliminates need for a job-server 
• Job distribution based on round 

robin or load-based heuristic

captain

scheduler

...
Search 1

search 2

LOAD

SUCC

FAIL

load 
balancer

search -3 

Job Scheduling Orchestration



▶︎ Auto-failover – New captain becomes scheduler
▶︎ captain_is_adhoc_searchhead knob to reduce captain load
▶︎ Captain updates RA/DM summaries on indexers.
▶︎ Scheduler limits honored across the cluster
▶︎ Real time scheduled searches run one instance across cluster
▶︎ Centralized user quota Management*

Job Scheduling



High Availability Of Search Results

▶︎ Artifacts are replicated across the SH members
▶︎ Adhoc searches are not replicated
▶︎ At least replication_factor number of nodes should be in UP state for 

enforcing replication policy
▶︎ Replicated directory starts with “rsa_<sid>” in the dispatch directory
▶︎ Captain orchestrates reaping of search artifacts from dispatch directory 

of all members
▶︎ An artifact is served based on availability from (1) itself,  (2) search 

originating node, (3) captain 



▶︎ Captain maintains a global view of alerts and suppressions and updates the 
list to all members

▶︎ Captain registers all the adhoc searches run in the cluster
▶︎ Captain orchestrates reaping of search artifact replicas 
▶︎ GET /services/search/jobs requests on any member will proxy to captain to 

get complete jobs

Centralized Cluster State



Configuration 
Management

How are dynamic changes to SHC kept consistent?  



Configuration Files

▶︎ Goals
• Consistent user experience across all search heads
• Changes made on one member are reflected on all members

▶︎ Types of Configuration Files
• custom user content

• reports
• dashboards

• search-time knowledge
• field extractions
• event types
• macros

• system configurations
• inputs, forwarding, authentication



Configuration Changes

▶︎ Users customize search and UI configurations via UI/CLI/REST
• save report
• add panel to dashboards
• create field extraction

▶︎ Administrators modify system configurations
– configure forwarding
– deploy centralized authentication (e.g. LDAP)
– install entirely new app or hand-edited configuration



Search And UI Configurations

▶︎ Goal: Eventual Consistency
▶︎ Changes to search and UI configurations are replicated across the search 

head cluster automatically



Conf Replication - Workflow

my_dashboard.xml

C



Conf Replication – Progress Check

▶︎ captain keeps track of the conf replication progress of each SHC member 

https://localhost:11089 18bc830e3087301900bdf2a30dc1a67bf8
318ced: Tue Jul 19 15:32:56 2016

https://localhost:8089 18bc830e3087301900bdf2a30dc1a67bf8
318ced: Tue Jul 19 15:32:52 2016

https://localhost:8189 dc4a991d168ae746f27979212253d6fb95
9fc92c: Fri Jul 1 13:51:05 2016

https://localhost:9089 CaptainDummyOpId: Tue Jul 19 
15:32:09 2016



Bundle Replication
How are system-wide changes kept consistent?



System Configurations

▶︎ Recall: only changes to search and UI configurations are replicated across the 
search head cluster automatically

▶︎ Changes to system configurations are not replicated automatically because of 
their high potential impact

▶︎ How are system configurations kept consistent, then?



▶︎ Deployer: a single, well-controlled instance outside of the cluster
▶︎ Configurations should be tested on dev/QA instances prior to deploy

D

Configuration Deployment



A B C

Deployer

Bundle Push

/etc/shcluster/app1: No Changes
/etc/shcluster/app2: Updated
/etc/shcluster/user:  Updated

/etc/app2 /etc/app2: /etc/app2

/etc/user
/etc/user

/etc/user

Captain

Idx1: 
KB cksum1
KB cksum2

Idx2: 
KB cksum1
KB cksum2

Idx3: 
KB cksum1
KB cksum2

Idx4: 
KB cksum1
KB cksum2

All apps and config are 
shipped to the SHs in the 
initial deployer push

1

Only updated apps and 
updated user config is 
pushed on subsequent 
bundle push

2

App configuration 
is propagated to 
all SHC members

3

Periodically, captain checks 
for new bundles and 
propagates the bundles to 
the indexers

5

User configuration is sent 
to the captain and then 
replicated to remaining 
SHC members

4

Bundle Push



Bundle Replication

A B C
Captain

Idx1: cksum2
Idx2: cksum2

Search: cksum2

Idx3: KB cksum3 Idx4: KB cksum3

Idx1: 
KB cksum1
KB cksum2

Idx2: 
KB cksum1
KB cksum2

Idx3: 
KB cksum1
KB cksum2

Idx4: 
KB cksum1
KB cksum2

Captains delegates a 
scheduled search on 
SH B

3

SH B  determines the 
latest KB shared across 
peers (cksum2)

4

Indexers use the 
knowledge bundle 
(ckum2) included in 
search request

7

Search request is 
issued with common 
bundle checksum 
(cksum2)

6

SH periodically contacts CM to 
grab generation and peer set 
information. It tracks/reads 
async the latest  common 
knowledge bundle  across the 
peers

2

Each bundle push 
includes a KB cksum, 
when it is sent to the 
indexers

1

If indexers do not have a common bundle
• Best Effort Search uses common bundle 

across the the largest subset of indexers 
and excludes the other indexers

• Otherwise – a synchronous bundle 
replication is kicked off prior to search

5

Idx3: cksum3



▶︎ Deployer merges default and local app configuration during migration
▶︎ Post migration, users cannot perform certain operations on app settings like 

delete, move or unshare since default settings  are immutable by a user
▶︎ Tip: Exclude default (ex: search) apps during migration to avoid overwrite. 

Migrate any custom settings in default apps by moving them to a new app

SH->SHC Migration

A B C

Deployer

Bundle Push

/etc/app1 /etc/app1 /etc/app1

Captain

/etc/app1/default/dashboard1.xml
/etc/app1/local/dashboard2.xml

Single Search Head
/shcluster/etc/app1/etc/shcluster/app1/default/dashboard1

/etc/shcluster/app1/local/dashboard2

Deployer

/etc/app1/default/dashboard1.xml
/etc/app1/default/dashboard2.xml

SHC Members



Recent  Additions
What’s New in SHC?



SHC Health Checker

Goal: Improve diagnosability with actionable information 

▶︎ High level cluster health assessment
▶︎ Display node status 

• Captain/member
• Heartbeat status
• Uptime
• Local unpublished conf changes

▶︎ Determine conf replication baseline consistentcy
▶︎ Expose search concurrency limits (running/capacity)



Conf Replication - Health Check



Resilient Conf Replication
▶︎ Higher resiliency to ensure continuous replication of knowledge objects across 

the SHC members
• Conf replication failures when JSON string exceeds 512KB
• Long file path (>255 characters) leading to snapshot creation failure
• Large lookups files may block configuration push from the members
• Accelerated baseline match using bloom filters to find the common baseline

▶︎ Intelligent captain selection
• Prevent out-of-sync SHC member from becoming captain



▶︎ Delta bundle push to indexers on lookup deletes at runtime
• Trigger delta bundle replication when conf objects are deleted

▶︎ Deployer directs first bundle push to the Captain node
• Pushing to to captain enables faster bundle push down to the indexers

▶︎ Replicate option for lookup replication across SHC members
• replicate = true|false in transforms.conf

•True: lookup table is replicated to indexers, 
•False: lookup table is only replicated within SHC and not to the indexers

• Avoids limitation of not replicating outputcsv (used to capture search results)
• Use outputlookup to create a new csv file and replicate to SH and indexers as needed
• Target usecase is ESTracker tables, that are replicated to only to SHC members

▶︎ Support MV fields in outputlookup

Bundle Push/Replication Improvements



Captain is Node2Actions

▶︎ New SHC UI available from any of the SHC members
▶︎ Enabled only in SHC environments
▶︎ Enables admins to run cluster operations (rolling restart, captain transfer)
▶︎ More functionality to come in upcoming releases

SHC Manager UI



© 2017  SPLUNK INC.

1. SHC provides always-on search services 
and consistent user experience

2. Enable SHC for horizontal scalability

3. Recent additions: SHC health check 
(6.5), Increased conf replication resiliency 
(6.6), SHC manager UI (6.6)

Key 
Takeaways 



© 2017  SPLUNK INC.

Don't forget to rate this session in the 
.conf2017 mobile app

Thank You


