
Searching FAST
How to Start Using tstats and Other Acceleration Techniques

David Veuve | Principal Security Strategist

September 2017 | Washington, DC

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

How To Use This Presentation

▶︎ This PDF is intended to be a reference guide, to complement the
actual presentation

▶︎ If you’ve already dabbled in tstats, feel free to read through. If you’re new to
tstats, I highly recommend watching the video presentation first. I don’t do quite a
good enough job with this slide version for it to stand alone

▶︎ Please find the video recording on the .conf website, maybe mid-to-late October
(ask your Splunk team for updates if you don’t see it by then)

Agenda

1. Intro
2. David’s Story
3. Overview of Techniques (SI, RA, AP, tstats)
4. Data Models – What you need to know
5. How to transition from _raw to tstats
6. When Data Model Acceleration doesn’t work
7. Real World Examples
8. Advanced Topics

Personal Introduction

▶ David Veuve
Principal Security Strategist, Splunk

▶ SME for UEBA, Security, Architecture
▶ dveuve@splunk.com
▶ Former Splunk Customer
▶ Primary author of the Splunk

Security Essentials app

▶ 2017 Talks:
• Security Ninjutsu Part Four (Hi!)
• Searching FAST: Start Using tstats

and other acceleration techniques
• Quickly Advance Your Security Posture

with Splunk Security Essentials
▶ Prior Conf Talks:

• How to Scale Search from _raw to tstats
• Security Ninjutsu Part Three: .conf2016
• Security Ninjutsu Part Two: .conf 2015
• Security Ninjutsu Part One: .conf 2014
• Passwords are for Chumps: .conf 2014

Why All This?

▶︎ Getting results fast is great, but only half the puzzle
▶︎ If you / your team are writing searches that will run for 100 cpu hours per day,

suppose that’s 50% of your cluster’s time
▶︎ What if we could shrink that to 10 CPU hours? Your cluster just went from 75%

utilized to 30% utilized
▶︎ Search acceleration lowers your TCO
▶︎ Search acceleration saves you time waiting
▶︎ Search acceleration lets you ask all of the questions

Why This Talk? Why Now?

▶︎ tstats isn’t that hard, but we don’t have very much to help people make the
transition

▶︎ Everything that Splunk Inc does is powered by tstats
▶︎ I’ve taught a lot of people in smaller groups about Search Acceleration

technologies
▶︎ To the masses!

Who Are You?

▶︎ You are either a *super* hardcore dev, or you’re not brand new to Splunk
▶︎ You’ve played with SPL. You understand how it works
▶︎ You’re probably comfortable with stats
▶︎ People probably come ask you for help building queries or solving problems

What Will You Get?

▶︎ You’ll understand how to make queries that wow people
▶︎ You’ll cement yourself as *the* office or user-group search ninja
▶︎ You’ll happily learn how easy it is

© 2017 SPLUNK INC.

“David’s Story

Just a boy, standing in front of a search command,
asking it to show the syntax error.

Where I Started

▶︎ Customer at an advertising company
▶︎ Was a casual user, when I was handed a Business Analytics project
▶︎ Going from tens or hundreds of data points to millions
▶︎ Built tiered summary indexes
▶︎ Auto-switched between high granularity

and low based on selected time windows
▶︎ Tons of help from Nick Mealy @ Sideview

Then I Took A Break

▶︎ I took two years off of Splunk, missing 5.x and the initial
6.0 release

▶︎ Splunk released Report Acceleration
▶︎ Splunk released Data Model Acceleration

I Came To Splunk

▶︎ I rebuilt my dashboard. From Splunk 4 to Splunk 6, load time
went from 1.5 min to 27 seconds

▶︎ I used Report Acceleration – load time went down to 6 seconds

▶︎ But then I had a bunch of different searches running...

I Helped A Finance Company

▶︎ They wanted multiple dashboards, drilldown, searches, on 18 key fields in 2000
line XML documents

▶︎ Built an accelerated data model with 18 calculated spath fields
▶︎ Used the pivot interface to build dashboards
▶︎ 30 day unaccelerated load time would have been 2 days if I could wait
▶︎ 30 day accelerated load time was 15 seconds

I Helped A Health Care Company

▶︎ They wanted distinct count of dest_ip per src_ip per day, averaged and
stdev’d

▶︎ Running over raw wasn’t even considered
▶︎ Depending on the analysis, we can search and process over 1 billion

results / minute

© 2017 SPLUNK INC.

“Techniques
It’s all about the technique...

Summary Indexing

▶︎ Take the search you’re running right now, and store the results in a new index.
No license required

▶︎ How:
• Just add | collect in your search, specifying destination index (maybe ”summary”)
• Probably don’t want to use sistats, sitop, si..anything. They’re not really valuable.
• http://www.davidveuve.com/tech/how-i-do-summary-indexing-in-splunk/

▶︎ Examples:
• Store # of logins, # of distinct hosts, # of … per user / device / etc
• Email logs are horrible and slow to process – store the output
• ITSI Metric searches

Summary Indexing (2)

▶︎ Why: You’re not accelerating raw events, you’re accelerating the result of a search.
We can’t accelerate a search based datamodel. So: summary indexing

▶︎ Why not?
• No Multiple Levels of Time Granularity --------->
• Manual coordination of summary indexing ---->
• Missed searches -------------------------------------->

Report Acceleration

▶︎ Takes a single saved search, with stats/timechart/top/chart and pre-
computes the aggregates at multiple time buckets (per 10m, per hour,
per day, etc., based on your acceleration range)

▶︎ Automatically switches between acceleration and raw data access
when needed

▶︎ You cannot query the data in ways that you didn’t plan for originally

Report Acceleration (2)

▶︎ How:
• Go into the saved search configuration and check the Accelerate box
• Decide on over what time range you’d like to accelerate
• Keep in mind that longer time ranges => less granularity (so if you

choose 1 year, you’ll lose 10min or 1 hr buckets

▶︎ Example
• My exec dashboard needs to load, like, immediately

Normal Search Example

▶︎ You ask for a statistical search
▶︎ Indexers return minimum

necessary statistics
(e.g., an avg needs sum / count)

▶︎ SH computes final result
(sum(sum) / sum(count))

Report Acceleration Example

▶︎ SH regularly requests minimum
necessary statistics (e.g., avg
needs sum / count) split into time
buckets

▶︎ Later, when user requests
values, the SH already knows
the answer

Report Acceleration (3)

▶︎ Why?
• You’ve got a small modest dataset with low split-by cardinality where you are willing to be

crafty to run multiple queries
• Auto fallback to raw logs, auto backfill and recovery, auto time granularity
• SUPERFAST
• Easy

▶︎ Why Not?
• Mostly limited to a single search per job ------->
• Only support for basic analytics ------------------>
• Kinda a black art, not that widely used --------->

Accelerated Pivot

▶︎ Drag and drop basic stats interface, with the overwhelming power over
accelerated data models on the back end

▶︎ How:
• Build a data model (more on that later)
• Accelerate it
• Use the pivot interface
• Save to dashboard and get promoted

▶︎ Examples
• Your first foray into accelerated reporting
• Anything that involves stats

Accelerated Pivot (2)

▶︎ Why?
• Super easy
• Automatically switch between raw logs and accelerated data
• Data Model Acceleration = 💯

▶︎ Why Not?
• Not entirely accelerated by default ---------------->
• Can’t go summariesonly in UI ----------------------->
• Pivot search language is weirder than tstats ---->

tstats

▶︎ Operates on accelerated data models or tscollect files (and index-time field
extractions, such as source, host, index, sourcetype, and those ITSI or
occasional others)

▶︎ Can only do stats – no raw logs (today!)
▶︎ Is faster than you’ve ever imagined life to be.
▶︎ How:

• Different search syntax, which takes adjustment, but actually really similar to normal stats.
• | tstats count where index=* groupby index sourcetype

• Bring a four-point seat harness ‘cause we’re going FAST

tstats (2)

▶︎ Why?
• Distributed indexed field searching with the flexibility of search

language to define syntax
• summaries_only=t
• Faster than you’ve ever been

© 2017 SPLUNK INC.

“Data Models –
What You Need To Know

Something clever here..

Data Model Basics

▶︎ Essentially anything you can define in props and transforms can go into
an accelerated data model

▶︎ Only raw events – can’t accelerate a data model based on searches, or
with transaction, or etc.
Go check out summary indexing

▶︎ Favorite example: | eval myfield=spath(_raw, “path.to.my.field”) is slow.
Put that in your data model, and pivot/tstats queries will be superfast

▶︎ Next five slides from David Marquardt’s .conf2013 Preso
http://conf.splunk.com/session/2013/WN69801_WhatsNew_Splunk_DavidMarquardt_UnderstandingSplunkAccelerationT
echnologies.pdf

30

IDX	1
IDX	2

IDX	3

Cold	Path

Thawed	Path

Rawdata

TSIDX
hot_v1_100

hot_v1_101

db_lt_et_80

db_lt_et_101

*.data
*.tsidx
rawdata

db_lt_et_70

apple

beer

LEXICON

POSTING

“apple	pie	and	ice	cream	
is	delicious”

“an	apple	a	day	keeps	
doctor	away”

150
100

et
et

lt
lt

it
it

apple beer coke
ice java …

Home	Path

Source/Sourcetype/Host	Metadata

1	source	:	:	/my/log
2	source:	:	/blah

cream

Splunk Enterprise Index Structure

Posting
value

Seek
address

_time

0 42 1331667091

1 78 1331667091

2 120 1331667091

3 146 1331667091

4 170 1331667091

5 212 1331667091

6 240 1331667091

Raw events

Deep likes Bud light

Amrit likes Makers

Ledion likes cognac

Dave likes Jack Daniels

Zhang likes vodka

Deep likes Makers

Dave likes Makers

Raw Data Stored At Offsets

▶︎Each word in the raw event is indexed
▶︎The TSIDX will store the offset #, and

location in the
gzip’d journal

▶︎Querying
dave makers
returns #6

Raw Data Gets Indexed Term Postings List
Amrit 1
Bud 0
Daniels 3
Dave 3,6
Deep 0,5
Jack 3
Ledion 2
Makers 1,5,6
Zhang 4
cognac 2
likes 0,1,2,3,4,5,6
light 0
vodka 4

Raw events
Deep likes Bud light
Amrit likes Makers
Ledion likes cognac
Dave likes Jack Daniels
Zhang likes vodka
Deep likes Makers
Dave likes Makers

Reading Compressed Rawdata
journal.gz

0
78

148
236
380
434
506

Example: Reading offsets (120, 170)
1. Group offsets into residing chunks

120 falls into range (78, 148)
170 falls into range (148, 236)

2. Read data off disk and decompress
3. Run through field extractions
4. Recheck filters
5. Run calculations

This is disk + CPU EXPENSIVE

Storing Indexed Fields in TSIDX
Term Postings

List
bar::AB 1,3,7,39,98
bar::cez 0,6,9,12
bar::xyz 3,4,5,6
baz::1 3,6,85
baz::2567 0,5
baz::462 3,24,45
baz::98 2,3,5,8,9
baz::99023 1,5,6,76,99
foo::afdjsi 4,567,2345
foo::aghdafo 2,234,6667
foo::bazcxui
d

0,1,623,777
7

foo::cef 0,1,2,3,4,43
foo::zaz 4

Big Idea: Use the lexicon as a field
value store!

By simply separating fields and values with “::”
we can store sufficient information to run more
interesting queries.

Data Model queries don’t ever visit raw logs.
They live entirely within TSIDX!

© 2017 SPLUNK INC.

“How To Transition
From _Raw To Tstats

A whole new world (don’t you dare close your eyes)

Process Overview

▶︎ Build your data model with whatever fields you could care about
▶︎ Start with your raw search
▶︎ Identify the aggregation that you want to do

• Stats avg(bytes), dc(host), whatever else

▶︎ Make the minor syntax adjustments for tstats

Example Without Data Models

Raw
index=* | stats count by index, sourcetype

Tstats
| tstats count where index=* groupby index, sourcetype

Example With Data Models

Raw
tag=network tag=traffic | stats dc(dest_ip) by src_ip

Tstats
| tstats dc(All_Traffic.dest_ip) from datamodel=Network_Traffic groupby
All_Traffic.src_ip

Challenge: Identifying Fields

▶︎ What fields are actually in a data model?
▶︎ How did I know to use “All_Traffic.dest_ip” instead of “dest_ip” or instead of

“Network_Traffic.dest_ip?
▶︎ To figure it out, we can look at the data model definition via pivot, or at the

resulting tsidx files via walklex
▶︎ Pivot doesn’t require SSH access, but still leaves you guessing for parts
▶︎ walklex is much more accurate and preferable

Challenge: Identifying Fields

▶︎ What fields are actually in a data model?
▶︎ How did I know to use “All_Traffic.dest_ip” instead of “dest_ip” or instead of

“Network_Traffic.dest_ip?
▶︎ We used to have to SSH in to get really accurate results. But around .conf last

year, we created a new search command in the CIM app called datamodelsimple

▶ First get a list of your datamodels

Example | datamodelsimple
Finding the field names in the Network Traffic Datamodel

▶ Take that Datamodel name and
run a new | datamodelsimple to
find objects

▶ Pick your object and put it into |
datamodelsimple to find individual fields

Identifying Fields via Walklex

▶︎ Find the TSIDX File on your indexer (let’s assume a data model)
• Path set in your index config, but by default in the index folder
• Usually

$SPLUNK_HOME/var/lib/splunk/<INDEX>/datamodel_summary/<BUCKET_ID>
/<SEARCH_HEAD_GUID>/<DATAMODEL_NAME>/<TIMERANGE>.tsidx

• Good news: That’s by far the hard part
• Example: /opt/splunk/var/lib/splunk/defaultdb/datamodel_summary/1772_813B72E7-6743-

4F46-9DE6-536F78929EDD/813B72E7-6743-4F46-9DE6-
536F78929EDD/DM_Splunk_SA_CIM_Network_Traffic/1466344886-1466326949-
3864670955536478127.tsidx

▶︎ Run walklex, either with an empty string “” or a wildcard “*dest_ip*”
• $SPLUNK_HOME/bin/splunk cmd walklex <TSIDXFILE> “”

No longer needed,
but worth noting

Example WalklexNo longer needed,
but worth noting

Example Walklex For A Particular Field

No longer needed,
but worth noting

Example Distinct Count Of Walklex Fields

▶︎ /opt/splunk/bin/splunk cmd walklex 1457540473-1457196480-3287925045170504614.tsidx
"" | tr -s " " | cut -d" " -f3 | grep "::" | awk -F "::" '{print $1;}' | sort | uniq -c

No longer needed,
but worth noting

What About Indexed Extractions?

▶︎ Yes! Great alternative to Data Model Acceleration!
▶︎ No delays, no separate storage, if your dataset supports it
▶︎ Careful about noisy neighbor for high cardinality data
▶︎ In props.conf:

INDEXED_EXTRACTIONS = < CSV|W3C|TSV|PSV|JSON >
CSV - Comma separated value format
TSV - Tab-separated value format
PSV - pipe "|" separated value format
W3C - W3C Extended Extended Log File Format
JSON - JavaScript Object Notation format

tstats Where Clause

▶︎ Works surprisingly like the initial search criteria of a raw search
▶︎ where index=* sourcetype=pan_traffic OR sourcetype=pan:traffic

• Just like normal search

▶︎ | tstats count where index=pan 10.1.1.1
• With non-datamodel data, 10.1.1.1 will be in the tsidx.

▶︎ where earliest=-24h
• Note that there is a bug in 6.3, 6.4 where a more restrictive timepicker range doesn’t override

the earliest=… (unlike in raw search – this is a bug)

tstats Grouping By

▶︎ When grouping by values (e.g., src_ip, sourcetype, etc.) it’s like a normal stats ….
by …
• | tstats count where index=* groupby source, index

▶︎ You can also group by time, without using the bucket command
• | tstats count where earliest=-24h index=* groupby index _time span=1h

Bugs And Surprises

▶︎ There *was* a bug in 6.3/6.4 with earliest and latest where tstats doesn’t
override the time picker, so easiest to leave your time picker at all time.

▶︎ Sometimes tstats handles where clauses in surprising ways. For example: no
underscores in search criteria (or many other forms of punctuation!), no
splunk_server_group, no cidrmatches (All_Traffic.dest_ip!=172.16.1.0/24 –
Fail. All_Traffic.dest_ip!=172.16.1.* – Success)

© 2017 SPLUNK INC.

“When Data Model Acceleration
or tstats Don’t Work

a sad, sad day…

On The Output Of A Stats Command

▶︎ Sadly, you can’t accelerate a search-based data model, so no luck
▶︎ This is where Summary Indexing comes in
▶︎ You can also do index-time field extractions on summary indexes if you’re fancy,

and then tstats on those!

fields.conf:
[indexed_itsi_kpi_id]
INDEXED=true

Workaround: Stats -> SI + Index Time -> tstats

▶︎ Creating index time fields is a hassle, involving fields.conf, props.conf,
transforms.conf, but it works on summary indexed data

▶︎ For example, from ITSI, we index the field indexed_itsi_kpi_id from summary
indexed searches (sourcetype: stash_new)

props.conf:
[stash_new]
TRANSFORMS-set_kpisummary_index_fields = set_kpisummary_kpiid

transforms.conf:
[set_kpisummary_kpiid]
REGEX = itsi_kpi_id\s*=\s*([^\s,]+)
WRITE_META = true
FORMAT = indexed_itsi_kpi_id::$1

When Your Cardinality Is Crazy High

▶︎ Tstats can process huge numbers of events (billions, trillions, no problem)
▶︎ But if we have to store millions of rows in memory based on your split-by, that

can be rough
▶︎ Example: 300,000 person company tracks # of logins per user per day over

100 days. 300,000 * 100 = 30M rows, which means writing partial results to
disk and sadness

▶︎ Better approach is to summary index each day, and then use tstats to process
those results either via index-time summarization or DMA

When Any Cardinality Is Crazy Crazy High

▶︎ tstats efficiency is fundamentally based on the assumption that a particular
value will be used a few times

▶︎ If you have millions of events, each with 10 data points, with 10 points of
precision such that repeat values are unlikely, your tsidx file will be
absolutely massive

© 2017 SPLUNK INC.

“Real World Examples
When things stop being slow, and start getting real

Splunk(x) - Index Searches

▶︎ For running our Splunk Internal UBA project, we needed to know what
sourcetypes were in the system

▶︎ _raw: index=* earliest=-24h | bucket _time span=1h | stats count by sourcetype, _time
• Time to complete: 68,476 seconds (19 hours)

▶︎ tstats: | tstats count where index=* groupby sourcetype _time span=1h
• Time to complete: 6.19 seconds

▶︎ Speed Difference: 11,062x (not percent, eleven thousand times faster)
▶︎ Query Length difference: 18 characters shorter

Financial Customer XML Use Case

▶︎ What Technology?
• Accelerated Data Models with Pivot

▶︎ Why?
• Heavy XML Parsing meant search queries were terribly slow
• Pivot was very easy to use

▶︎ Result
• Very high scale, very happy customer

Financial Customer XML Use Case (2)
▶︎ No XML extraction
▶︎ Raw: 8.811 seconds

• index=xx-xxxx sourcetype=xxx-xxx splunk_server=myserver01.myserver.local ParticularLogIdentifier host=*ServerType* |
timechart count by host

▶︎ Accelerated Pivot: 1.25 seconds
• | pivot XXXXXXX YYYYYY count(YYYYYY) AS "Number of Events" SPLITROW _time AS _time PERIOD auto SPLITCOL host

FILTER host is "*ServerType*" SORT 100 _time ROWSUMMARY 0 COLSUMMARY 0 NUMCOLS 100 SHOWOTHER 1

▶︎ Tstats Summaries Only: 0.896 seconds
• | tstats summariesonly=t count from datamodel=XXXXXXX where (nodename = YYYYYY) (YYYYYY.host="*ServerType*")

groupby _time

▶︎ Speed Difference: 9.9x Faster
▶︎ Query Length: 18 characters shorter

Financial Customer XML Use Case (3)

▶︎ Single XML Extraction via spath
▶︎ _raw: 299.763 seconds

• index=xx-xxxx sourcetype=xxx-xxx splunk_server=myserver01.myserver.local ParticularLogIdentifier | eval RuleId=spath(_raw, "
___path____.___to__._____very_______._____long___._:_xml___._:____._:_____.______.__________.__________.________
______.______ ")| timechart count by RuleId

▶︎ Accelerated Pivot: 2.4 seconds
• | pivot XXXXXXX YYYYYY count(YYYYYY) AS "Number of Events" SPLITROW _time AS _time PERIOD auto SPLITCOL RuleId SORT 100

_time ROWSUMMARY 0 COLSUMMARY 0 NUMCOLS 100 SHOWOTHER 1

▶︎ tstats summariesonly: 2.04 seconds
• | tstats summariesonly=t count from datamodel=XXXXXXX where (nodename = YYYYYY) groupby RuleId_time

▶︎ Speed Difference: about 146.9x faster
▶︎ Query Length: 50 characters shorter

Financial Customer XML Use Case (4)

▶︎ Heavy XML Extraction (mentioned earlier). Searches anonymized...
▶︎ An Entire Dashboard of Unaccelerated Pivots with lots of XML spath

• Time to complete: 172,800 seconds (2 days)

▶︎ An Entire Dashboard of Accelerated Pivots
• Time to complete: 16 seconds

▶︎ Speed Difference: about 10000x
▶︎ Time Taken to Build 14 Panel Dashboard via Pivot: 15 minutes

ES Endpoint + Proxy + AV

▶︎ What Technology?
• ES Data Models + tstats

▶︎ Why?
• ES Data Models were already built, and multiple data sources so tstats append=t

▶︎ Result
• Super fast search, high scalable.
• Data Models make things easier

▶︎ Downside
• In this case, a 19 second savings every 15 minutes = a $211 ROI/year on a $300k Splunk

infrastructure… maybe not enough?

ES Endpoint + Proxy + AV

▶︎ From last year’s Security Ninjutsu Part Two, correlating sysmon with proxy and
AV data

▶︎ _raw:
[search tag=malware earliest=-20m@m latest=-15m@m | table dest | rename dest as src]
earliest=-20m@m (sourcetype=sysmon OR sourcetype=carbon_black
eventtype=process_launch) OR (sourcetype=proxy category=uncategorized)
| stats count(eval(sourcetype="proxy")) as proxy_events
count(eval(sourcetype="carbon_black" OR sourcetype="sysmon")) as endpoint_events by src
| where proxy_events > 0 AND endpoint_events > 0

– 21 seconds

ES Endpoint + Proxy + AV (2)

▶︎ tstats:
| tstats prestats=t summariesonly=t count(Malware_Attacks.src) as malwarehits from datamodel=Malware
where Malware_Attacks.action=allowed groupby Malware_Attacks.src
| tstats prestats=t append=t summariesonly=t count(web.src) as webhits from datamodel=Web where
web.http_user_agent="shockwave flash" groupby web.src
| tstats prestats=t append=t summariesonly=t count(All_Changes.dest) from datamodel=Change_Analysis
where sourcetype=carbon_black OR sourcetype=sysmon groupby All_Changes.dest
| rename web.src as src Malware_Attacks.src as src All_Changes.dest as src
| stats count(Malware_Attacks.src) as malwarehits count(web.src) as webhits count(All_Changes.dest) as
process_launches by src

– 2 seconds

ES Endpoint + Proxy + AV (3)

▶︎ Speed Difference: 10.5x
• It doesn’t always have to be 10,000x. 10x or even 3x is still a huge reduction in resources

▶︎ Query Length difference: 282 characters longer
• Multiple namespaces can make things longer, and also maybe more complicated

sometimes. Worth it though

© 2017 SPLUNK INC.

“Advanced Topics

Because it’s been straightforward so far, right?

allow_old_summaries and summaries_only

▶︎ These two settings are perhaps the most important to tstats
▶︎ summaries_only means that we won’t automatically fall back to raw data – this

means fast results, and much more of a difference than you would probably
expect. If searching 100 days of data, and 15 minutes aren’t accelerated, we
probably don’t care

▶︎ allow_old_summaries is key for two scenarios:
• You leverage the common information model, which is periodically updated, and you want to

be able to search data from an earlier version (very likely)
• You have multiple apps with different global config sharing settings, and you want to search

from an app that didn’t *generate* the data model originally

allow_old_summaries and summaries_only (2)

▶︎ While these settings are automatically set to true in
ES (and probably other Splunk owned apps),
because they are so key you may want to set them
to true automatically across the system via
limits.conf

▶︎ Big impact: pivot will use whatever the default is
• Note: the pivot user interface actually runs tstats. The

pivot search command is not impacted – I know, I know

prestats=t

▶︎ Tstats can be fed into upstream stats. For example, tstats _time span=… put
directly into a graph looks terrible

▶︎ | tstats prestats=t count where index=* groupby _time span=1d index| timechart
span=1d count by index

chunk_size

▶︎ How much data will be retrieved by tstats from a tsidx file at once
▶︎ Tradeoff between memory, sorting, and other factors
▶︎ Default value (10000000 – 10 MB) is usually the right fit.

• Lowering that could significantly hurt performance.
• For very high cardinality, raising it to 50 MB or 100 MB may be beneficial
• Worth testing out only for a long-running search you will use regularly

Searching Across Multiple Namespaces

▶︎ With normal search, you can use as many different indexes, sourcetypes, etc as
you want, with reckless abandon.

▶︎ With tstats, you can use append=t, but requires prestats=t. Frequently requires
munging with eval along the way.

▶︎ | tstats prestats=t dc(All_Traffic.dest) from datamodel=Network_Traffic groupby
All_Traffic.src
| tstats prestats=t append=t count from datamodel=Malware groupby
Malware_Attacks.dest
| eval system=coalesce('All_Traffic.src', 'Malware_Attacks.dest')
| stats dc(All_Traffic.dest), count by system

Searching Across Multiple Namespaces (2)

▶︎ If you are querying the same parameters in the first and second query, such as
comparing time spans or looking at two counts, use eval with coalecese to define
a field

| tstats prestats=t append=t count from datamodel=Malware where earliest=-24h
groupby Malware_Attacks.dest
| eval range="current"
| tstats prestats=t append=t count from datamodel=Malware where earliest=-7d
latest=-24h groupby Malware_Attacks.dest
| eval range=coalesce(range, "past")
| chart count over Malware_Attacks.dest by range

Searching Across Multiple Namespaces (3)

You can also use different fields, such as count(Malware_Attacks.src),
count(web.src), and etc.
▶︎ | tstats prestats=t summariesonly=t count(Malware_Attacks.src) as

malwarehits from datamodel=Malware where
Malware_Attacks.action=allowed groupby Malware_Attacks.src

▶︎ | tstats prestats=t append=t summariesonly=t count(web.src) as
webhits from datamodel=Web where
web.http_user_agent="shockwave flash" groupby web.src

▶︎ | tstats prestats=t append=t summariesonly=t
count(All_Changes.dest) from datamodel=Change_Analysis where
sourcetype=carbon_black OR sourcetype=sysmon groupby
All_Changes.dest

▶︎ | rename web.src as src Malware_Attacks.src as src
All_Changes.dest as src

▶︎ | stats count(Malware_Attacks.src) as malwarehits count(web.src)
as webhits count(All_Changes.dest) as process_launches by src

Pull Malware Data

Pull Web (Proxy) Data

Pull Endpoint Data

Normalize Field Names

Do Count

Drilldown

▶︎ Drilldowns from tstats queries don’t often work correctly
▶︎ Best to put that in a dashboard where you can manually define the drilldown

_indextime

▶︎ While the Splunk UI doesn’t show _indextime normally, you can use it because
it is an indexed field. Just | eval _time=_indextime

▶︎ You can’t do aggregations on it, but you can filter!
▶︎ Both the time range picker *AND* _indextime apply
| tstats count min(_time) as min_time max(_time) as max_time where

[| stats count as search | eval search="_indextime>" . relative_time(now(), "-7d") | table search]
index=* groupby _indextime
| eval lag=_indextime - (min_time + max_time) / 2
| eval _time = _indextime
| timechart avg(lag)

A Special Note About Time

_time is special with tstats, for a couple of reasons:
▶︎ You can’t do avg(_time) or range(_time)
▶︎ You can do min(_time) and max(_time) and of course groupby _time

span=10m (or whatever time)

Cardinality

▶︎ Data models are phenomenal with split-by cardinality, e.g.:
• | tstats avg(bytes) from datamodel=Network_Traffic groupby All_Traffic.dest_ip

▶︎ Data models are less great with overwhelming field cardinality, when tracking
metric data

▶︎ Round off irrelevant data points. If you have temperature to 7 decimal places, but
1 decimal place is all that actually matters, just accelerate that
• Don’t include the unrounded field in your data model, because then the acceleration will store it

and you’ll use more disk space

Scheme On What?

▶︎ Data Models are a great combination of schema on read and schema on write
▶︎ As with everything in Splunk, you can flexibly define and change your schema,

rebuild tsidx, etc.
▶︎ But for accelerated data models, you get all the performance of scheme on

write… without losing the flexibility to redefine and rebuild as needed
• Obviously, for VERY large datamodels, you might not want to wait for a rebuild, but you can

affect moving forward

Quirks of Data Model Acceleration

▶︎ Second compression. You can’t look at milliseconds or microseconds for _time
without hijinks (separate field and separate filtering)

▶︎ Requires stats. It’s called tstats for a reason – there’s no tstatsraw.
▶︎ | datamodel search command was the devil < 6.4 – much better in

newest release
▶︎ Interrogating fields is a hassle
▶︎ TSIDX trades disk space for performance

© 2017 SPLUNK INC.

“Summary
Let’s pull it all together, team

Summary

▶︎ Getting started w/ tstats: use tstats on normal indexed data
• Counting events
• Looking for indextime lag

▶︎ tstats is actually really easy
▶︎ That said, there are some weird quirks.

• Check out the PDF

© 2017 SPLUNK INC.

Summary

© 2017 SPLUNK INC.

1. Getting started: use accelerated pivot on data
models

2. Getting started w/ tstats: use tstats on normal
indexed data
• counting events
• looking for indextime lag

3. tstats is actually really easy

4. That said, there are some weird quirks

5. Grab the PDF Version of this deck
Look at you, ahead of the game! Go watch the
video though: conf.splunk.com

Key
Takeaways

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

I get to come back if
you give me good
ratings. Rate high,
early, and often!

