
Search Performance
Improvements
What we’ve done and why we did it…

Alex James – Senior Principal Product Manager (Search Technologies)
Manan Brahmkshatriya - Principal QA Engineer

25-28th Sept 2017 | Washington, DC

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

Session Outline

Language Improvements
Data Model Improvements
Optimizer Improvements
Further Improvement Ideas
Q&A

3

SPL Language
Improvements

Generating Search – typical breakdown

5

index scan
rawdata & decompression

kv
(auto and explicit)

autolookup

typer

tagger

post filter search

i.e. the time taken for the first search processor to do its job, with lots of TAs.

~ 50%

time

Search Directives
Producing TAGS & EVENT TYPES is very costly

• With lots of TAs it can easily be 50% of the total cost of the search

• Tags are stored in one multi-valued field

• We treat as ALL or NOTHING

Now have a way to selectively request just one or more TAGS (and types)
• search 500 DIRECTIVES(REQUIRED_TAGS(tags="foo, bar"))

• search 500 DIRECTIVES(REQUIRED_EVENTTYPES(eventtypes="alpha,omega"))

Combining Directives…
• search 500 DIRECTIVES(REQUIRED_EVENTTYPES(eventtypes="alpha,omega"),REQUIRED_TAGS(tags="foo,bar"))

• Will produce list of EVENT TYPES needed to correctly produce foo and bar tags

• And merge with “alpha, omega” event types...

Impact
• Low – targeted searches for a few events

• High – broad searches returning lots of events (i.e. Monitoring & Acceleration)

7

5

10

15

20

TIME

INDEXERS

25

0

How Data Model Acceleration works…

▶ Issues prior to 7.0:
• Acceleration of warm/cold buckets was all or nothing. (I’ve started so I’ll finish...)

• So acceleration of a large warm/cold bucket could monopolize acceleration.

• Slowest indexer holds up the other indexers.

• So even temporary data imbalance could lead to loss of parallelism, and cascading delays.

▶ Solution:
• Added ability to pause / continue accelerating warm/cold buckets. (I’ve started, but something more important / hot has come along…)

• This means acceleration.max_time is now fully respected, even when processing historical data.

• Next acceleration search starts with hot buckets, thus keeping lag low, even when rebuilding acceleration from scratch.

• If summarization search finishes early we can poll for new data (to reduce lag) so all indexers can be keep busy.

• See new setting acceleration.poll_buckets_until_maxtime=true

▶ Impact:
• 7.0 typically twice as fast as 6.5 (or faster).

• 7.0 lag typically 50% as 6.5 (or less).

• Data Model Acceleration Rebuilds have less impact.

Data Model Acceleration (DMA)
Problem and Solution

Demo #1
Typer / Tagger and DMA improvements

▶ Imagine a search like this:
• search tag=authentication | stats sum(bytes) by host

▶ Main gate on parallelism / scalability is the number of hosts
▶ But if we implicitly shuffle before the stats:

• search tag=authentication | shuffle by host | stats sum(bytes) by host

• Reduction can happen in parallel

▶ Limited support for this in 7.0:
• Needs both:

• Global enablement (phased_execution=true in limits.conf)

• SPL search by search enablement (| noop phase_mode=3)

• Works with only: stats, transaction and tstats
▶ Much more coming...

Improved High Cardinality Processing
Using Parallel Reduce

Demo #2
New Optimizations in 7.0

New Optimizations in 7.0

12

Projection Elimination for Reporting Commands
– search ERROR | eval x=a*b | lookup users uid OUTPUT username | stats count by host
– search ERROR | stats count by host

Predicate Splitting
– | eval x = a+b | where x=10 and y=10
– | where y=10 | eval x = a+b | where x=10

Tag Elimination
– search ERROR | where tag=“Authentication” | stats count by host
– search DIRECTIVES(REQUIRED_TAGS(tags=“Authentication”)) | where tag=Authentication | stats count by host

Collapsing evals commands
– | eval x=a+b | eval y=c+d
– | eval x=a+b, y=c+d

Predicate Normalization
– search ERROR | where 10=y
– search ERROR y=10
– Why would you ever do this:

ê search ERROR |… |… | eval x=10|… |… | where x=y

Further Improvement
Ideas

Further Improvement Ideas (1)

Faster Lookups and Lookup Replication
Better data structures and serialization formats
More optimization

• Projection Elimination for Fields
− search ERROR | eval x=a*b | inputlookup users uid OUTPUT username | fields b, username

− search ERROR | inputlookup users uid OUTPUT username | fields b, username

• Merging into Inputlookup (KV Store)
− | inputlookup foo | search x=10

− | inputlookup foo where x=10

• Etc.

Further Improvement Ideas (2)

Better Parallel Reduce
• Implicit support for more reporting commands
• Better timeliner and preview integration
• Continued parallel execution (for both streaming & compatible reporting splits)

• | tstats values(Authentication.app) as app, latest(Authentication.user_bunit) as user_bunit from datamodel=Authentication.Authentication by
Authentication.user, Authentication.src _time span=1s
| eventstats dc(Authentication.src) as src_count by Authentication.user
| search src_count>1

• Explicit Shuffle support
• search tag=authentication | shuffle by host | <any spl>

Better support for result reuse…

▶ Lots of searches are scheduled to run on a frequent schedule (every 5m,10m,15m) but cover a larger time
range (last 1h, 3h, 24h).

▶ Which means there is a lot of re-calculation occurring
• i.e. For a search over the last hour run every 5 mins, ~55mins worth of results have already been calculated once (for

the last run) but thrown away.

▶ Report Acceleration (RA) has the ability to incrementally build results already.
• Unfortunately RA doesn’t work for TSTATS searches.
• Why? TSTATS searches leverage Data Model Acceleration (DMA) and we don’t support RA over DMA.

▶ Many Sliding Windows searches are based on TSTATS
• Currently investigating adding support for RA over DMA

Sliding Window Re-use

Run 10

Run 11

Run 12

10 11 12

…

…

Example of Result Reuse

Summary - What does this mean for you?

17

Faster Searches
Faster Enterprise Security
Look for opportunities to use new DIRECTIVES
Checkout the optimizer in the Job Inspector
Upgrade to 7.0 (or at least 6.5 if that isn’t possible).

Q&A
Alex James - Senior Principal Product Manager
Manan Brahmkshatriya – Principal QA Engineer

© 2017 SPLUNK INC.

1. Splunk 7.0 is significantly faster.

2. Key improvements include: new
directives, optimizer improvements and
DMA improvements.

3. If you have ES the difference in DMA is
very significant.

This is where the
subtitle goes

Key
Takeaways

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

Backup Slides
If the session runs short…

Union

Similar to append but is streaming when possible:
• | union [search …| lookup cust id OUTPUT name], [search …| eval name=“SPLK”]

• Returns same data as:

• search …| lookup cust id OUTPUT name | append [search …| eval name=“SPLK”]

• <except> it runs in parallel on indexers (using an improved version of multisearch when possible)

Useful for correlation searches, i.e. append | stats to do a pseudo join
Supports:

• More than 2 datasets: | union [<spl1>], [<spl2>], ... , [<splN>]
• Named dataset format (like from) : | union savedsearch:mysavedsearch, [<spl2>], inputlookup:threats
• Shorthand (like append): <spl1> | union [<spl2>]

Should still use a single search or tstats append if possible...
• Don’t do this: search “error” | union [search “warning”]
• Do this: search “error” OR “warning”

5

10

15

20

5 mins

7 mins

13 mins

TIME

INDEXERS

DELAY

16 mins

25

0

Effect of temporary data imbalance prior to 7.0

