
To HEC with syslog!
Scalable Aggregated Data Collection in Splunk

Mark Bonsack, CISSP | Staff Sales Engineer
Ryan Faircloth | PS Security Consultant

September 28, 2017 | Washington, DC

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

Who are we?

▶Mark: Staff Systems Engineer, Southwest Majors
6 years @ Splunk
Focus: Data Onboarding, Security, IT Operations

▶Ryan: Senior Security Consultant
3 years @ Splunk
Focus: Security, Data Onboarding, Search Performance

3

© 2017 SPLUNK INC.

1. Syslog and Splunk Best Practices

2. Traditional Syslog/UF Architecture

3. New! HEC with Syslog

4. Python HEC Interface to Syslog

5. Wrap-up/Resources

We Will
Discuss:

Syslog and Splunk:
Best Practices

Section subtitle goes here

What can Splunk Ingest?
Agent-Less and Forwarder Approach for Flexibility and Optimization

Syslog
server

Event Logs, Active Directory, OS Stats
Unix, Linux and Windows hosts

Universal Forwarder

syslog hosts
and network devices

Local File Monitoring
Universal Forwarder

Aggretation
host Windows

Aggregated/API Data Sources
Pre-filtering, API subscriptions

Heavy Forwarder

Mainframes*nix

Wire Data
Splunk Stream

Universal Forwarder or
HTTP Event Collector

DevOps, IoT,
Containers

HTTP Event Collector
(Agentless)

shell
API

perf

Syslog
server

If You Take Only One Thing From This Session...
Do not send syslog traffic (on any port) directly to Splunk indexers

(Except in the smallest of installations. Or other corner cases. There are always corner cases.)

TCP/UDP 514

▶ Even data distribution on indexers required for search performance at scale
• Sending ”514” traffic to just one indexer works in only the smallest of deployments
• UDP load balancing typically trickier than TCP

▶ Syslog is a protocol – not a sourcetype
• Syslog typically carries multiple sourcetypes
• Sourcetypes are essential for “Schema on the Fly”

▶ Best Practice: pre-filter syslog traffic using syslog-ng or rsyslog
• Provides for a separate sourcetype for each technology in the syslog stream of events
• Use a UF (good) or HEC (best!) back end for proper sourcetyping and data distribution

▶ The rest of this session will show you how to do that!

Here’s Why...

▶ Can’t find my events when everything is just syslog; no fields to help
• Yes we can search by IP but we have to look only by key words (“uber-grep”).
• No ”Schema on the Fly” – the key to 99% of the power of Splunk!

Ramifications of doing it wrong
Improper sourcetyping

▶ Each indexer takes a turn processing all events for a given block of time, its
just like having 1 indexer
• | tstats count where index=pan_logs by span=1s _time splunk_server | timechart
sum(count) as count by splunk_server useother=false

Ramifications of doing it wrong
Uneven data distribution

Solution: Use a UF or HEC to transport data to Splunk
UF HEC

▶ Indexers share even load for all time spans

Benefits of doing it right

▶ Even better distribution (real customer data; 1 TB/day ingest)

And at scale...

syslog-ng
▶ Very rich filtering syntax
▶ High familiarity
▶ Open Source or fully supported from

Balabit
• Becoming less prevalent on recent Linux

distros

rsyslog
▶ Default on almost all Linux distros
▶ Somewhat difficult filtering syntax

• Though getting better

▶ Some distros (Red Hat) may use old
versions unsupported by the
upstream

Syslog-ng or rsyslog?
Which syslog server to choose?

Both Equally at Home with Splunk!

Traditional UF
Architecture

Time-tested performance

▶ Time-tested
▶ Scales – to a point.
▶ Complicated Architecture at Scale

▶ Two configuration tasks
• Configuration of Syslog server and UF

▶ So – Let’s dig in!

Syslog/UF Architecture
Traditional Approach

Syslog-ng Config File Structure
You will see variations on this theme

Global Options

Log Sources

Log Destinations

Log Filters

Log Declarations (Source, Dest, Filter)

Syslog-ng Configuration
Global Options and Sources

Global Options
options {
sync (40);
time_reopen (10);
time_reap(5);
long_hostnames (off);
use_dns (no);
}

Log Sources
source s_syslog {
udp(ip(0.0.0.0)
port(514));
tcp(ip(0.0.0.0)
port(514));
};

Syslog-ng Configuration
Destinations, Filters, and Log Directives

Destinations
destination d_checkpoint { file("/var/splunk/syslog-${LOGHOST}/chpt/${HOST}.log” create_dirs(yes));};
destination d_asa { file("/var/splunk/syslog-${LOGHOST}/asa/${HOST}.log” create_dirs(yes)); };
destination d_all { file("/var/splunk/syslog-${LOGHOST}/data/all.log" create_dirs(yes)); };

Filters for Sourcetypes
filter f_checkpoint { host("10\.64\.8\.79") and match("kernel"value("PROGRAM")); };
filter f_asa { match("%ASA" value("MESSAGE")); };

Log directives
log { source(s_syslog); filter(f_checkpoint); destination(d_checkpoint); };
log { source(s_syslog); filter(f_asa); destination(d_asa); };

Rsyslog Config File Structure
You will see variations on this theme too!

Global Options

Log Sources

Log Filters

Log Actions

Log Outputs

rsyslog Configuration
Global Options and Sources

#load modules only once
module(load="imudp")
module(load="imptcp")
module(load="omprog")

#Accept both tcp and udp; some sources use both
input(type="imudp" port="514" ruleset=”splunk_file")
input(type="imptcp" port="514" ruleset=”splunk_file")

rsyslog Configuration
Destinations, Filters, and Log Directives

#Filters and Actions for Splunk UF

ruleset(name="splunk_file") {
if $msg contains \'%ASA\' then {

action(type="omfile”
File="/var/splunk/syslog-%myhostname%/asa/%hostname%.log")

}
if fromhost-ip == "10.64.8.79" then {

action(type="omfile”
File="/var/splunk/syslog-%myhostname%/checkpoint/%hostname%.log")

}
}

UF inputs.conf Configuration
Uses structure created by syslog filtering

[monitor:///var/splunk/syslog-*/asa/*.log]
disabled = 0
index = network_firewall
host_regex=\/var\/splunk\/syslog[^\/]*\/[^\/]*\/([^\.]*)
sourcetype = cisco:asa

[monitor:///var/splunk/syslog-*/chpt/*.log]
disabled=0
index=network_firewall
host_regex=\/var\/splunk\/syslog[^\/]*\/[^\/]*\/([^\.]*)
Sourcetype = chpt:next_gen

New! HEC with
Syslog

Scalable and Simple!

© 2017 SPLUNK INC.

This is where the
subtitle goes

What Drove
the Need?

• Data distribution

• Search performance

• Ease of Configuration

• OPEX cost reduction

▶ Scales significantly beyond standard
UF Architectures

▶ Allows use of standard TCP load
balancers in data path

▶ Simpler to configure and administer
at scale

▶ Utilizes most of syslog config from
UF-based architecture

Syslog/HEC Architecture
A New Approach to Scale

▶ Each source (file) is assigned to a pipeline
▶ Each pipeline will (based on time) rotate to the next indexer at random

• Most customers choose (default) 30s

▶ Therefore each pipeline may only load 2 indexers per minute or 10 over 5 min.
▶ The problem becomes more pronounced as the rate of events from a source

increases and the number of indexers increase

What causes the indexer imbalance

▶ The goal is to minimize the separation of the lines in the graph below
• All indexers receive an equal distribution of data

▶ Solution: Balance the indexer by events – not time or size

Proper load balancing makes search faster!

Check your own environment
How even is your indexed data?

| tstats count where index=* sourcetype=<largest syslog type by volume> by span=10s
_time splunk_server
| timechart sum(count) as eps by splunk_server

Enable HTTP Event Collection
via inputs.conf on the indexer

Set Up the Load balancer

▶ Select least connected round robin
▶ Reuse existing SSL Sessions

To HEC with Syslog!
Prepare the indexers for HEC

[http]
disabled=0
port=8088

[http://syslog]
disabled=0
index=main
token=<yourguidhere>
indexes=main,summary

syslog-ng Configuration for HEC
Simple change for HEC (Raw endpoint; batch via external script)

Raw endpoint, batch mode via “omsplunkhec.py” script.
Arguments to omsplunkhec.py: token, HEC host, options, payload
Payload can use full complement of syslog-ng templates and macros
Note: GUID required by raw endpoint is supplied by omsplunkhec.py

destination d_http3
{ program("/usr/local/bin/omsplunkhec.py 00000000-0000-0000-0000-000000000000
hec_endpoint --sourcetype=syslog_tcp --index=main"
template("original_host=${HOST} <${PRI}>${DATE} ${HOST} ${MSG}\n")); };

rsyslog Configuration for HEC
Simple change for HEC (Raw endpoint; batch via external script)

Raw endpoint, batch mode via “omsplunkhec.py” script.
Arguments to omsplunkhec.py: token, HEC host, options, payload

ruleset(name="splunk_file") {
if $msg contains \'%ASA\' then {

action(type="omprog" binary="/usr/local/rsyslog/bin/omsplunkhec.py DAA61EE1-
F8B2-4DB1-9159-6D7AA5220B21 192.168.100.70 --sourcetype=cisco:asa --index=netfw"
template="RSYSLOG_TraditionalFileFormat")

}

if fromhost-ip == "10.64.8.79" then {
action(type="omprog" binary="/usr/local/rsyslog/bin/omsplunkhec.py DAA61EE1-

F8B2-4DB1-9159-6D7AA5220B21 192.168.100.70 --sourcetype=chpt:next_gen
--index=netfw" template="RSYSLOG_TraditionalFileFormat")

}
}

▶ ...and the same event (other than the timestamp):
<165>1 2017-03-19T23:44:38+00:00 sender.computer.org evententry - ID47 [example
iut="3" eventSource="Application" eventID="1011"] Test message

▶ Looks like this using the d_http3 syslog-ng destination (“raw” HEC endpoint):

What does all this look like in Splunk?
Using the previous syslog-ng configuration examples

Python HEC Interface
to Syslog

omsplunkhec.py

▶Where to get it:
https://bitbucket.org/rfaircloth-splunk/rsyslog-omsplunk

Yes, a simple Script
Its just that easy!

Read input from stdin

Assign event to a connection in pool

Bundle events into transactions

Post the events

▶ Never write data to disk
▶ Keep the process simple

• avoid any processing that could be done in the syslog server or Splunk
• Read one event from the syslog server per line from stdin

▶ Bundle events together in raw mode
• allows effective use of each session “batch size”
• allow tuning if needed

▶ Keep data moving
• use a thread pool allowing the load balancer to manage which indexer needs messages next
• thread pool prevents the time required for session management from impacting latency

omsplunkhec.py Design Considerations

token: http event collector (HEC) token (required)
server: http event collector (HEC) IP/fqdn (required)
--port: port: (default='8088')
--ssl: use ssl: (action='store_true', default=False)
--ssl_noverify: disable ssl validation: (action='store_false')
--source: Splunk metadata: (default="hec:syslog:" + host)
--sourcetype: Splunk metadata: (default="syslog")
--index: Splunk metadata: (default="main")
--host: Splunk metadata: (default=syslog_host)
--maxBatch: max number of records allowed in one batch of requests for hec:
(default=10, type=int)
--maxQueue: max number of records to be read from rsyslog queued for transfer:
(default=5000, type=int)
--maxThreads: max number of threads for work: (default=10, type=int)

Arguments to omsplunkhec.py
Supplied when calling script from syslog server

Wrap-up
Additional Resources

© 2017 SPLUNK INC.

1. Do not send “514” syslog traffic directly to
forwarders or indexers!

2. Use a syslog server with UF or HEC for
data fidelity, performance and scale

3. There are many helpful resources, both
Splunk and open source

This is where the
subtitle goes

Key
Takeaways

▶ This session is fully documented here:
• https://www.splunk.com/blog/2017/03/30/syslog-ng-and-hec-scalable-aggregated-data-

collection-in-splunk.html (Basis of this talk)
• https://www.rfaircloth.com/2016/05/16/building-high-performance-low-latency-rsyslog-splunk/
• http://www.rfaircloth.com/2017/02/10/building-perfect-syslog-collection-infrastructure/

▶ Additional Resources
• https://bitbucket.org/rfaircloth-splunk/rsyslog-omsplunk (omsplunkhec.py source)
• https://www.splunk.com/blog/2016/05/05/high-performance-syslogging-for-splunk-using-syslog-

ng-part-2.html (good overview of syslog-ng server configuration and optimization)
• https://www.balabit.com/documents/syslog-ng-ose-latest-guides/en/syslog-ng-ose-guide-

admin/html/ (syslog-ng documentation)
• http://www.rsyslog.com/rsyslog-configuration-builder/ (rsyslog configuration tool (beta))
• http://www.rsyslog.com/doc/v8-stable/ (rsyslog documentation)

Helpful Resources

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

