Regex
Regexp
Regexes

Regular expression

Gabriel Vasseur

511a/5.0 (Maci
I ; e! ; l I pe “Molg‘,375.3s Safa,-:;'st;’;fxd;”u:
. (2\2--\(34&50“(0‘“3/(';;@1&)SESSIONID=SDSSL5FFS:E!

62 7 q.‘&e@@oc\i\\)d;fm,lqu .
a] P; 7y x"“‘&‘«‘ e Y
R o Ay (\’l
r eXpressions« | ex\p|es D)
) V),
[0} @
p o

S

i SIS T
--------------- E roduct jgary n
=Y Ty
e 3 h=\ O Wy
LSS AT A i
y S ’@ 2.\ \\fo 2 1
\o .
A (4?63;%?\ Q/\?Q‘§ J}."\
s X a
K’b \ -A“(,(,dq‘\\ \({\o\ %j\
ARSI Ha} %y
o ewoziL1ale 8 s intomn: 9 (© o) : S {70% X
/Es“(xomels»efglssésssIONI;i;é:gfésgs' QS o ?., ,\;\‘\3\;\ f,\:
e I G e ThT i . o ¢ T
e ey e S <% oF IRy
n?f y Mgy “\\:Eral%,m \\N\W{ﬂ"& ‘”:r"z K Y\"Q\‘loo 3
; k L . % RN
o ?é CO - il t&rﬁﬁpiw Bimp g0 4 EY °v "
\ o L@ @, 0. . 0 i E y
. SV AN 17 ity i
)/ IO \) gL
\Q &QQ&-\QQ’\LO e, 2
= . X Q, 6) R Vo2
3 3 6 %N
iy SR Gy
NG,
B 40 H %%\Q
h g3
LN 0
e 2
S
(=

£4007 29
Atel M-— :”63\;%&_—\(5 N
M[D Fs4a 142-*2Z4- 5 A !
e 0 -
E TONID=spas sersppresss V0 a0 (o3 %
f "Y' €€5/Lae)RS SE'SLE) e 3
n 3”501U;39N> GS/E\\\'

Disclaimer

During the course of this presentation, we may make forward looking statements regarding future
events or the expected performance of the company. We caution you that such statements reflect our
current expectations and estimates based on factors currently known to us and that actual events or
results could differ materially. For important factors that may cause actual results to differ from those
contained in our forward-looking statements, please review our filings with the SEC. The forward-
looking statements made in the this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or
accurate information. We do not assume any obligation to update any forward looking statements we
may make. In addition, any information about our roadmap outlines our general product direction and is
subject to change at any time without notice. It is for informational purposes only and shall not, be
incorporated into any contract or other commitment. Splunk undertakes no obligation either to develop
the features or functionality described or to include any such feature or functionality in a future release.

splunk> (.conf201s

Surviving this talk

"DON'T BLINK!"

Doctor Who = -
PG = 3 =

45min Adver

"BLINK AND YOU'RE DEAD”.

; splunk> ‘conf2ots

Surviving This Talk

Hang on to the key messages:

Regexes are different from the simpler patterns we’re used to
It’s always WHAT, optionally followed by HOW MANY
Regexes are not anchored by default

Wake up for the key tricks

Legend: regex match not-a-match candidate-for-matching

Get the slides or the recording afterwards!

N splunk> ‘conf2ots

Regex vs Rest of the (pattern) World /"*

any any amount of special chars
character any character Examples
bash ls /opt/log/www?/*.log
dos ? * dir *.doc
splunk search | search action="analy?e"
sQL WHERE phone LIKE '©1256%'
splunk "like" _ % | where action LIKE "analy e"
| where like(action, "analy e")
Regexes . ¥ | where match(action, "analy.e")

what how many times

> splunk> ‘conf2ots

Regex vs Rest of the (pattern) World

pattern vs value Examples
bash Sttern matches | search user="admin*"
dos P matches: admin administrator
lunk h whole value .
splunk searc but not: sysadmin
sqL pattern matches | where like(action, "analy_e")
splunk "like" whole value matches: analyze analyse
but not: re-analyse

pattern matches | where match(user, "admin")

Regexes anywhere in value matches: admin administrator
sysadmin

...unless anchored!

° splunk> ‘conf2ots

g

Regex vs Rest of the (pattern) World

Regex Matches Doesn’t match
admin
admin administrator
sysadmin
. admin .
Aadmin sysadmin

administrator

admin$ admm. administrator
sysadmin
Aad ‘\e admin sysadmin

administrator

! splunk> ‘conf2ots

*N

Regex vs Rest of the (pattern) World

bash
DOS sSQL
splunk search splunk "like" Regexes
admin admin Aadmin$ vo\“‘\eﬁ GA
S
s@ admin% Aadmin Nadmin.* "a&@%
€0
*admin %admin admin$.*adeuﬁ‘ x'.*adminS
admin* %admin% admin

splunk> (conf2o1s

. NS\ €
Special Characters

Special Characters

Line feed (unix EOL) \n (windows EOL: \r\n)
Carriage return (old mac EOL) \r
Tab \t

Escaped Characters

a literal dot \.
a backslash \\
etc...

> splunk> ‘conf2ots

FAS\(]

Character Classes “\in
Character classes
(almost) any character
— adigit \d [0-9] [1234567890]
a word character \w [A-Za-2z0-9]
white space \s
a hex digit [A-Fa-f0-9]
Negated character classes
not a digit \D [70-9]
not a word character \W [*"A-Za-2z0-9_]
not white space \S
not a hex digit [*A-Fa-f0-9]

splunk> (conf2o1s

FAS\[1+2{}

Quantifiers “\ini
Pointless on their own!
Zero or more *
One or more +
Zero or one ?
Exactly 4 times {4}
Min. 3 times {3,}
Min. 2, max. 5 times {2,5}

splunk> (conf2o1s

FAS\[1+2{}

Anchors “\in
Match a position, zero-width!
Start of line A *Regexes are fun!
End of line $ Regexes are fun.*

Word boundary \b fegexe&irekur*

admin\b matches admin sysadmin admin-sql

but not admininstrator admin_oracle

splunk> (conf2o1s

FAS\[1+2{}

You Blinked! Aini

= splunk> ‘conf2ots

FAS\[1+2{}

Putting it all Together (so far) A\

UK/US spelling colou?r matches color colour

An MD5 hash \b[A-Fa-f0-9]{32}\b
[Y 1|{ 1 }"_'_’

A base64 string [A Za-z0-9/+]+={0, 3}
: =

splunk> (conf2o1s

FAS\[1+2{X()

Grouping i
Alternatives

Greeting in Canada: (hello|bonjour)
[abc] sameas (a|b|c)
Quantifiable
A sentence with at least one word: (\w+)*\w+\ .
R

A Base64 paragraph : *([A-Za-z0-9/+]+\r?\n)*[A-Za-z0-9/+]+={0,3}%

splunk> (conf2o1s

FAS\[1+2{X()

Grouping e
I Capturingwith (...)

2> Allows to refer to what was matched

> Dear (Mrs?|Miss \w+), applied toDear, Mr,Jones" 2> \1=“Mr" \2="“Jones”
Dear; ('I) (\w+) app Deay Mrjones)

I Non-Capturing with (?:...)

> Dear (?:Mrs?|Miss) (\w+) applied to "Dear Mr Jones' - \1="Jones”

I Extracting with (?P<...>...)

> Dear (?P<title>Mrs?|Miss) (?P<name>\w+)

> applied to "Dear Mr Jones' - title=“Mr" name="Jones”

splunk> (conf2o1s

FAS\[1+2{X()

Still here? v Ain)

Wake up! “Key tricks” are coming up!

U splunk> [confo1s

Key Tricks

Qu oted Phrases: .. DENIED "Social Networking" http://...
Trick: everything is either the delimiter: " or not the delimiter: [*"]
Answer: "([/~"]*)"

L[] ,)L'J

what if "I have \" in the middle"? It gets complicated...

Delimiter-separated list: White List;Education;Technology/Internet

naive: HIRH
what if at start or end? @"!; W25 1%(815)
capturing the match U1 %]5)

get the Nth field: SYSTEM.User.Success Audit, ABC123456,Logon/Logoff

get 4t field from start "|[?;‘|]*|,,]) 8BH, 1%),
get one-before-last field , ([*,]1*),[*,]*$

18

FAS\[1+2{}(1)
-Min]

splunk> (conf2o1s

FAS\[1+2{X()

To Infinity & Beyond! A\

There is a lot more to regular expressions than this...

— Mode modifiers (e.g. tweak case sensitivity)

— Lookaround (e.g. match something but not if followed/preceded by
something else)

— The notion of greediness for quantifiers

— backreferences (e.g. match repeated patterns)

Recommended resources:

— http://www.regular-expressions.info
— http://regexr.com/

— https://regex101.com/

splunk> (conf2o1s

JAS\[1+2{}(1)
How to Use Regular Expressions in Splunk-e

eg(ular expressions?|ex(ples)?)

splunk> (conf2o1s

. JAS\[1+2¢)(1)
Splunk > Filter Your Search Results ¢

| search some field=...

— value case insensitive (field names are always case sensitive)
— simple pattern, e.g. | search user=admin*

— simple comparisons, e.g. | search count>5

— can't refer to other fields

| where some field=...

— value case sensitive
— full eval syntax: can refer other fields, e.g. | where src!=dest
— guotes: use " when referring to literal values and ' for field names

| regex some_field=...

— straight forward filter based on a regular expression

splunk> (conf2o1s

JAS\[1+2{}(1)
Splunk > eval match \ing

Part of the "eval" syntax, most useful in "if" or "case"

DEMO MATCH

— index=main sourcetype=bluecoat* | dedup user | eval
is_contractor=if(match(user,"~c"),"yes","no") | table user
is admin is contractor

— try naive regexes, notice issues and fix them (add \d and a?)

— Add | eval is_admin=if(match(user,"~a"),"yes","no")
— Again, fix issues with [uc]?\d

splunk> (conf2o1s

FAS\[1+2{X(1)
Splunk > eval replace Ain(

Part of the "eval" syntax

DEMO REPLACE

— index=main sourcetype=bluecoat DENIED Malicious | stats
count by category

— Replace stats: | eval cat=replace(category, "Malicious",
"Delicious") | stats count by category cat

— add (. *) to the end of the regex and change replace stringto "\1 is
delicious™

— Pointless but gives an idea of what is possible!

splunk> (conf2o1s

Splunk > rex

Extract new field(s) out of an existing field

DEMO REX 1

index=main sourcetype=bluecoat DENIED Malicious | stats

count by cs categories
Notice the category issue
| rex field=cs_categories "(?P<cat>Malicious)"

Add .+
Replace . with [}]

FAS\[1+2{}(1)
-Min]

splunk> (conf2o1s

JAS\[1+2{}(1)
Splunk > rex “\in

DEMO REX 2: use Splunk's suggestions!

— index=main sourcetype=bluecoat | table _time _raw http_referrer

— open same in two tabs. In one of them "extract more fields"

— If short of time, take one with "Social Networking" or "Entertainment", otherwise
choose one with "Business/Economy" or "Technology/Internet"

— First problem: not matching all the which.co.uk

— Change first part of the regexp to either ~[~"]*"[~"]*" or ~(?2:\S+){12}"[""]
4

— Second problem: not matching - or other website

— change after:// to \S+ -2 now see regular-expression.info also matching

— change the whole URL to \S+ = see the dash matching

— go back to initial search and do | rex field=_raw "" < copy regex and escape "

— compare with http_referrer

splunk> (conf2o1s

JAS\[1+2{}(1)
Splunk > rex i

Rex Conclusion

— Know your data, know your regex: use Splunk's suggestion but tweak it!
— Be as restrictive as you can where possible

— Check many examples for edge cases
— For permanent extraction you can copy-paste the regex and use it in an EXTRACT

in a props.conf

splunk> (conf2o1s

[07/Jan 18
2&JSESSTONID S

533

Pr

.38 Safari,.

%97] "GET 4,

THANK YOU

 Remember the key messages:
- The way regexes are different from the patterns you’re used to

- It’s always WHAT, optionally followed by HOW MANY
- Beware of unintended matches and edge cases

- Get the slides and/or recording ' | D . B
g oo AR
4 3 \‘\Kﬁ L3%¢)

gexor "rex”

* Any questions?

splunk >

