
Copyright	©	2016	Splunk Inc.

Jacob	Leverich
Software	Engineer,	Splunk

Extending	SPL	with
Custom	Search	Commands

Disclaimer

2

During	the	course	of	this	presentation,	we	may	make	forward	looking	statements	regarding	future	
events	or	the	expected	performance	of	the	company.	We	caution	you	that	such	statements	reflect	our	
current	expectations	and	estimates	based	on	factors	currently	known	to	us	and	that	actual	events	or	
results	could	differ	materially.	For	important	factors	that	may	cause	actual	results	to	differ	from	those	

contained	in	our	forward-looking	statements,	please	review	our	filings	with	the	SEC.	The	forward-looking	
statements	made	in	the	this	presentation	are	being	made	as	of	the	time	and	date	of	its	live	presentation.	
If	reviewed	after	its	live	presentation,	this	presentation	may	not	contain	current	or	accurate	information.	
We	do	not	assume	any	obligation	to	update	any	forward	looking	statements	we	may	make.	In	addition,	
any	information	about	our	roadmap	outlines	our	general	product	direction	and	is	subject	to	change	at	
any	time	without	notice.	It	is	for	informational	purposes	only	and	shall	not,	be	incorporated	into	any	
contract	or	other	commitment.	Splunk	undertakes	no	obligation	either	to	develop	the	features	or	

functionality	described	or	to	include	any	such	feature	or	functionality	in	a	future	release.

Who	am	I?
Splunker for	2	years,	based	in	San	Francisco

Engineering	lead	for…
– Machine	Learning	Toolkit
– ITSI	Anomaly	Detection	and	Adaptive	Thresholding	features
– Splunk custom	search	command	interface

Implemented	Search	Command	Protocol	Version	2

Die-hard	Longhorns	fan	

3

Agenda

4

Introduction	to	Custom	Search	Commands
How	do	Custom	Search	Commands	work?
– High-level	concepts
– Low-level	details

Types	of	Search	Commands
How	to	create	new	Custom	Search	Commands
Wrap-up

Introduction	to	Custom	Search	Commands

What	is	a	Custom	Search	Command?
A	user-defined	SPL	command.

7

|	search

8

What	is	a	Custom	Search	Command?
A	user-defined	SPL	command.

Can	be	used	to	extend	the	SPL	language!

Who	uses	Custom	Search	Commands?
Partners
– Concanon,	etc.

Customers
– Use-case	specific	analytics

Splunk!
– predict command
– DB	Connect
– Machine	Learning	Toolkit

Anyone	who	wants	to	extend	the	Splunk platform
– Integration	with	3rd party	services
– Implementation	of	custom	logic

How	do	Custom	Search	Commands	work?

How	do	Custom	Search	Commands	work?

12

1. When	parsing	SPL,	splunkd interrogates	each	command.
“Are	you	a	Custom	Search	Command?”

2. If	so,	spawn	external	process	and	allow	it	to	parse	arguments.

3. During	search,	pipe	search	results	through	external	process.

Parsing	#1:	Split	search	into	commands

13

| inputlookup geo_attr_us_states.csv | GOCRAZY | head 5

inputlookup geo_attr_us_states.csv

GOCRAZY head 5

Parsing	#2:	Look	for	custom	search	commands

14

| inputlookup geo_attr_us_states.csv | GOCRAZY | head 5

inputlookup geo_attr_us_states.csv

GOCRAZY head 5

[gocrazy]
…

commands.conf

Parsing	#3:	Spawn	external	process

15

| inputlookup geo_attr_us_states.csv | GOCRAZY | head 5

inputlookup geo_attr_us_states.csv

GOCRAZY head 5

$SPLUNK_HOME/bin/python	gocrazy.py

Parsing	#4:	Let	external	process	parse	arguments

16

| inputlookup geo_attr_us_states.csv | GOCRAZY | head 5

inputlookup geo_attr_us_states.csv

GOCRAZY head 5

$SPLUNK_HOME/bin/python	gocrazy.py

Search:	Pipe	results	through external	process

17

| inputlookup geo_attr_us_states.csv | GOCRAZY | head 5

inputlookup geo_attr_us_states.csv

head 5GOCRAZY

$SPLUNK_HOME/bin/python	gocrazy.py

Recap:	high-level	concepts

18

Enable	you	to	register	new	SPL	commands,	extend	the	language.

Allow	you	to	intercept	and	modify	search	results	during	a	search.
– CSV	in	➞ CSV	out

Implemented	as	a	external	process	(i.e.	a	program	you	write).
– Typically	written	in	Python.

Custom	Commands:	low-level	details

19

How	results	are	exchanged	between	splunkd and	external	process
“Types”	of	search	commands

splunkd⬌ custom	command

20

There	are	two	“protocols”	for	custom	commands:
– Version	1,	legacy	protocol	used	by	Intersplunk.py (available	since	Splunk 3.0)
– Version	2,	new	protocol	used	by	Python	SDK	(available	since	6.3)
– In	both	protocols,	all	communication	over	stdin/stdout

Version	2	protocol
– Spawns	external	process	once,	streams	results	through	chunk	by	chunk
– Simple	commands.conf configuration

ê “chunked=true”
– Support	for	platform-specific	programs

Version	1	protocol
– Spawns	external	process	for	each	chunk	of	search	results	(!)
– “Transforming”	commands	limited	to	50,000	events

Search	Command	protocol	comparison

21

Protocol APIs Performance Scalability Simple	
configuration

Platform-
specific	
programs

Programming
languages

Version	1	
(legacy)

Intersplunk.py,
Python SDK ✘ ✘ ✘ ✘

Python

Version	2 Python	SDK
✔ ✔ ✔ ✔

Python,
Javascript,
bash,	Shell,
arbitrary
binaries

Search	Command	Protocol	Version	2

22

• Transaction-oriented
• splunkd sends	a	command,	external	process	responds	with	reply

• Simple	bi-directional	transport	protocol:
• ASCII	transport	header
• JSON	metadata	payload
• CSV	search	results	payload

• Every	search	starts	with	a	“getinfo”	command	(capability	exchange)
• Subsequently,	issues	“execute”	commands	with	search	results

Transport	“chunk”

chunked 1.0, 22, 54
{“action”: “execute”}
_raw,a,b,c
hello,0,1,2
everyone,3,4,5
howareyou,6,7,8

Transport	header
Metadata	(JSON)

Data	payload	(CSV)

Metadata	length Data	length

Example:	GOCRAZY

24

| inputlookup geo_attr_us_states.csv | head 5 | GOCRAZY

chunked 1.0,22,106
{“action”: “execute”}
state_code,state_fips,state_name
AL,01,Alabama
AK,02,Alaska
AZ,04,Arizona
AR,05,Arkansas
CA,06,California

$SPLUNK_HOME/bin/python
gocrazy.py

chunked 1.0,18,106
{“finished”: true}
dste_aecot,pste_asfit,mste_aenat
LA,10,aaalbmA
KA,20,laaskA
ZA,40,iaorznA
RA,50,Akaasnsr
AC,60,iCifolarna

Protocol	Version	2:	Transaction	timeline

25

tim
e

splunkd external	process

✘
…

“What	kind	of	command
are	you?”

“Hey!	I’m	a
streaming	command!”

“getinfo”	command

26

Metadata	in	the	getinfo command	sent	by	splunkd:
– Command	arguments
– Full	SPL	query	string
– Execution	context	(app,	user)
– Search	sid
– splunkd URI	and	auth token	(for	making	REST	requests)

Metadata	in	the	custom	command’s	reply:
– Type	of	search	command	(streaming/stateful/reporting/etc.)
– Which	fields	splunkd should	extract	(required	fields)
– Whether	or	not	it	generates	results	(e.g.	must	be	first	search	command)

Sample	“getinfo”	metadata
{

"action": "getinfo",
"streaming_command_will_restart": false,
"searchinfo": {

"earliest_time": "0",
"raw_args": [

"LinearRegression", "petal_length", "from", "petal_width”
],
"session_key": "...",
"maxresultrows": 50000,
"args": [

"LinearRegression", "petal_length", "from", "petal_width”
],
"dispatch_dir": "/Users/jleverich/builds/conf_mlapp_demo/var/run/splunk/dispatch/1475007525.265",
"command": "fit",
"latest_time": "0",
"sid": "1475007525.265",
"splunk_version": "6.5.0",
"username": "admin",
"search": "%7C%20inputlookup%20iris.csv%20%7C%20fit%20LinearRegression%20petal_length%20from%20petal_width",
"splunkd_uri": "https://127.0.0.1:8090",
"owner": "admin",
"app": "Splunk_ML_Toolkit”

},
"preview": false

}

“execute”	command

28

Metadata	in	execute	command	sent	by	splunkd
– Whether	or	not	preceding	commands	are	“finished”

Metadata	in	the	custom	command’s	reply:
– Whether	or	not	this	command	is	“finished”

splunkd and	search	commands	negotiate	completion	of	search
– Both	must	indicate	“finished”	=	True

Types	of	Search	Commands

Types	of	Search	Commands
“Streaming”	commands

“Stateful Streaming”	commands

“Transforming”	commands
– “Events”	commands
– “Reporting”	commands

“Streaming”	commands
Process	search	results	one-by-one
– Can’t	maintain	global	state
– Must	not	re-order	search	results

Eligible	to	run	at	Indexers
– Can	run	in	parallel	on	Indexers

Examples:
– eval
– where
– rex

“Streaming”	command	example

32

... | eval foo=“bar” | ...

field_A field_B field_C foo

the jumps dog bar

quick over oops bar

brown the too bar

fox lazy many bar

field_A field_B field_C foo

the jumps dog bar

field_A field_B field_C foo

quick over oops bar

field_A field_B field_C foo

brown the too bar

field_A field_B field_C foo

fox lazy many bar

Remote	results

Final	search	results

Indexers

Search	
head

“Stateful Streaming”	commands
Process	search	results	one-by-one
– Canmaintain	global	state
– Must	not	re-order	search	results

Only	run	at	Search	Head

Examples:
– accum
– streamstats
– dedup

“Stateful Streaming”	command	example

34

... | accum foo | ...

field_A field_B field_C foo

the jumps dog 1

quick over oops 2

brown the too 3

fox lazy many 4

field_A field_B field_C foo

the jumps dog 1

quick over oops 1

brown the too 1

fox lazy many 1

“Events”	commands
Process	search	results	as	a	whole
– May	re-order	search	results
– Typically	maintain	all	fields	in	each	event,	especially:

ê _raw,	_time,	index,	sourcetype,	source,	host

Only	run	at	Search	Head
May	run	several	times	for	“preview”

Examples:
– sort
– eventstats

“Events”	command	example

36

... | sort field_A | ...

field_A field_B field_C foo

brown the too 3

fox lazy many 4

quick over oops 2

the jumps dog 1

field_A field_B field_C foo

the jumps dog 1

quick over oops 2

brown the too 3

fox lazy many 4

“Reporting”	commands
Process	search	results	as	a	whole
– Typically	transform	the	results	(e.g.	aggregate,	project,	summarize,	etc.)

Only	run	at	Search	Head
May	run	several	times	for	“preview”
Results	show	up	in	the	“Statistics”	tab

Examples:
– stats
– timechart
– transpose

“Reporting”	command	example

38

... | stats count | ...

count

4

field_A field_B field_C foo

the jumps dog 1

quick over oops 2

brown the too 3

fox lazy many 4

Beware	of	large	result	sets!

39

“Events”	and	“Reporting”	commands	process	results	as	a	whole.
– May	contain	1,000,000s	of	search	results!
– Write	Streaming	or	Stateful commands	instead	when	possible.

Build-in	capacity	limits,	or	spill	results	to	disk	when	necessary.

Streaming	“pre-op”

40

Commands	may	specify	a	“pre-op”	to	prepend	in	SPL

Communicated	to	splunkd in	getinfo metadata	(streaming_preop)
Useful	to	parallelize	computation,	reduce	volume	of	data	transfer
Must	be	“Streaming”	(i.e.,	may	run	at	Indexers)

... | stats count | | prestats count | stats count | ...

Implementing	Custom	Search	Commands
with	the	Splunk SDK	for	Python

41

Basic	steps	to	create	a	search	command
1. Create	an	“App”
2. Deploy	the	Python	SDK	for	Splunk in	the	bin directory
3. Write	a	script	for	your	Custom	Search	Command
4. Register	your	command	in	commands.conf
5. Restart	Splunk Enterprise
6. (optional) Export	the	command	to	other	apps

Create	an	“App”

43

Deploy	the	Python	SDK	in	the	bin directory

44

cd $SPLUNK_HOME/etc/apps/MyNewApp/bin

pip install -t . splunk-sdk

Write	a	script	for	your	Custom	Search	Command

45

import sys
from splunklib.searchcommands import dispatch, StreamingCommand, Configuration

@Configuration()
class FoobarCommand(StreamingCommand):

def stream(self, records):
for record in records:

record['foo'] = 'bar'
yield record

if __name__ == "__main__":
dispatch(FoobarCommand, sys.argv, sys.stdin, sys.stdout, __name__)

$SPLUNK_HOME/etc/apps/MyNewApp/bin/foobar.py

Register	your	command	in	commands.conf

46

[foobar]
chunked=true
filename=foobar.py ## <--- optional

$SPLUNK_HOME/etc/apps/MyNewApp/default/commands.conf

Restart	Splunk Enterprise

47

$SPLUNK_HOME/bin/splunk restart

Export	to	other	apps	(optional)

48

Export	to	other	apps	(optional)

49

Export	to	other	apps	(optional)

50

Example	Streaming	Command

51

import sys
from splunklib.searchcommands import dispatch, StreamingCommand, Configuration

@Configuration()
class ExStreamCommand(StreamingCommand):

def stream(self, records):
for record in records:

record['foo'] = 'bar'
yield record

if __name__ == "__main__":
dispatch(ExStreamCommand, sys.argv, sys.stdin, sys.stdout, __name__)

$SPLUNK_HOME/etc/apps/MyNewApp/bin/exstream.py

Example	Stateful Streaming	Command

52

import sys
from splunklib.searchcommands import dispatch, StreamingCommand, Configuration

@Configuration(local=True)
class ExStatefulCommand(StreamingCommand):

def stream(self, records):
for record in records:

record['foo'] = 'bar'
yield record

if __name__ == "__main__":
dispatch(ExStatefulCommand, sys.argv, sys.stdin, sys.stdout, __name__)

$SPLUNK_HOME/etc/apps/MyNewApp/bin/exstateful.py

Example	Events	Command

53

import sys
from splunklib.searchcommands import dispatch, EventingCommand, Configuration

@Configuration()
class ExEventsCommand(EventingCommand):

def transform(self, records):
l = list(records)
l.sort(key=lambda r: r['_raw'])
return l

if __name__ == "__main__":
dispatch(ExEventsCommand, sys.argv, sys.stdin, sys.stdout, __name__)

$SPLUNK_HOME/etc/apps/MyNewApp/bin/exevents.py

Example	Reporting	Command

54

import sys
from splunklib.searchcommands import dispatch, ReportingCommand, Configuration

@Configuration()
class ExReportCommand(ReportingCommand):

@Configuration()
def map(self, records):

return records

def reduce(self, records):
count = 0
for r in records:

count += 1
return [{'count': count}]

if __name__ == "__main__":
dispatch(ExReportCommand, sys.argv, sys.stdin, sys.stdout, __name__)

$SPLUNK_HOME/etc/apps/MyNewApp/bin/exreport.py

A	little	advice

55

Custom	commands	are	programs that	run	on	Splunk instances
–BEWARE	UNVALIDATED	INPUT!
– Sanitize	user	arguments	AND	search	results

Use	role-based	access	control	to	restrict	access

Be	prepared	to	handle	1,000,000s	of	events

Be	excellent	to	each	other.

What	Now?	

56

https://github.com/splunk/splunk-sdk-python
– https://github.com/splunk/splunk-sdk-

python/tree/master/examples/searchcommands_app

Dev	Portal	Documentation
– http://dev.splunk.com/view/python-sdk/SP-CAAAEU2

Detailed	specification	for	Protocol	Version	2	available	by	request
PM	Contact:	Mark	Groves	<mgroves@splunk.com>

THANK	YOU

Streaming	Commands	only	serialize	required	fields

Internal	result	set
_raw,_time,_cd,_indextime,...,fieldX
a,1400000000,x:y,1400000010,...,BOB
a,1400000001,x:y,1400000011,...,JIM
a,1400000002,x:y,1400000012,...,BOB
a,1400000003,x:y,1400000013,...,JIM
a,1400000004,x:y,1400000014,...,JIM
a,1400000005,x:y,1400000015,...,BOB
a,1400000006,x:y,1400000016,...,JIM
a,1400000007,x:y,1400000017,...,BOB
a,1400000008,x:y,1400000018,...,BOB
a,1400000009,x:y,1400000019,...,JIM

External	result	set
_chunked_idx,fieldX
0,BOB
1,JIM
2,BOB
3,JIM
4,JIM
5,BOB
6,JIM
7,BOB
8,BOB
9,JIM

{“required_fields”: [“fieldX”], …}

“Right	outer-join”	on	required	fields

Result	set

Result	set id
x

Sl
ic
e

N
ew

	fi
el
d

Result	set
N
ew

	fi
el
d

+

To	external	process

id
x

In	splunkd
• Supports

– Removing	events
– Adding	events
– Editing	fields
– Adding	fields

• Can’t	re-order	events

Performance	comparison

0
20
40
60
80

100
120
140
160
180

Ru
nt
im

e	
(s
ec
on

ds
)

Splunk

Protocol	v1

Protocol	v2

2.5	million	events

“Streaming”	command	example

61

... | eval foo=“bar” | ...

field_A field_B field_C

the jumps dog

quick over oops

brown the too

fox lazy many

field_A field_B field_C foo

the jumps dog bar

quick over oops bar

brown the too bar

fox lazy many bar

