ozi\\ilgéesg¢ch9tosh< v
7S /533
C“rome"ca‘_%izjsEsjfloili_liz?ﬁ;ﬁz;lsité
o5 O 0N 107070000 5 ':ﬁ: e (ate
07,7 N ANt G st gy
. A7 e B8 S50 T\t S "Iy
A éx‘x“tJV (i ﬂ% _\\\ P “\§91“4
Xy o o N\ (o§ h
c;gaoOoyl Jﬁﬁékﬁ ﬁkﬁ; N (AN
o0 & @ . f (ex 5
9 () (‘@ [o‘)\) (V ; 0 (J\
A < 2 ¢ %‘GQ 2& he
< Q&“’Q\ N N hes
Y/ a 4
’b‘(b« \ ‘e‘q,‘;i'*e(),cf“\ \\J\o2 N (&;‘:‘;\
= -
ozi113/5:0 (Macingg 9 Ol ‘ AR ¢ o8
v / 0.3 5.38 Safa£1/5337£‘”uir S ?f\\)-‘- 2
o Erone OIS R e <3 b o SR
g N N arani 0 e g N Q X [= < O
ol \Ib q«‘e@eCd i%% """ B ?f%:v “‘\JFWS\A-W " 2 1-3'_ g\a“ﬁ‘q")v,@"e
((’,L'\l& o NA¥S or©) %\ % ¢§X¥ Ly ™ m“\lmlm ‘% ;,;’Y\.&Of; G
e i\ N \
- S T SO O Ty S
a 2 \‘0\)‘ Q««@‘oo&i&‘ @’% ‘\\)4]]]“2 ; & SR g
=) Koy & i P>
i E y -\%/\5 rﬁoﬁeﬁ”\@%i (P Mgy i
S Q i "4_'“'0,0@ a0 \ "2 -
@;:u Q\Q X, Qé)‘\o"\\ o =
00 . A V.2 o
e ‘ NGO A 2%
54%00’@‘(0 \Q)Qo- 10,5, 5
@S OR % G 5%
4%, t"1olﬁ 4) =
s .Qo \E pr\/]‘d ‘):'n'_?e \".
— = e 2i 82
j/\ N Zeaad 37 (Mac' D‘%o
:) 2375 intog
S) (/ a 0d) sh
s — e ¢
v % . W J.s
==
® (O \

Let Stats Sort Them Out

Nick Mealy

Founder, Sideview LLC

neor oo :’é\’}sﬁ
= LRSS

= ADRSI SERANBTESTS ™ o

n"Y EEs/Laeses gg GLE

BT
fU4sojuisey) @ S/E\“low‘

t

-t
- AP L

YPE

[

Who Is This Guy?

Nick Mealy
“sideview” On answers and slack, “madscient” on IRC
SplunkTrust member

Worked at Splunk in days of yore
(Mad Scientist/Principal Ul developer 2005-2010)

Founded Sideview 2010. The Sideview Utils guy

Search language expert

& splunk> conf2oié

What’s The Title Of This Talk?

Let stats sort them out - building complex result sets that use
multiple sourcetypes.

We will talk about:
Grouping!
Why are the good things good and the bad things bad!
Really? (yes. you can use stats to fold your laundry)

Life after grouping — even more filtering and reporting!

: splunk> conf2oié

Disclaimer

During the course of this presentation, we may make forward looking statements regarding future
events or the expected performance of the company. We caution you that such statements reflect our
current expectations and estimates based on factors currently known to us and that actual events or
results could differ materially. For important factors that may cause actual results to differ from those
contained in our forward-looking statements, please review our filings with the SEC. The forward-
looking statements made in the this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or
accurate information. We do not assume any obligation to update any forward looking statements we
may make. In addition, any information about our roadmap outlines our general product direction and is
subject to change at any time without notice. It is for informational purposes only and shall not, be
incorporated into any contract or other commitment. Splunk undertakes no obligation either to develop
the features or functionality described or to include any such feature or functionality in a future release.

= splunk> conf2oié

Splunk — The Short Short History

The following few slides contain backward looking statements
regarding events in the past. We caution you that such statements
reflect our imperfect memory and that actual events or results could
differ materially. The backward-looking statements made in the next
few slides are being made as of the time of the authoring of this
presentation. If reviewed prior to such authoring, time and space may
become unstable and the product, the conference and the known
universe will become* subject to change without notice.

* (willan on becomen)

: splunk> conf2oié

It’s 2004 And | Need To Search For Events!

Splunk 1.0 —Events are great!

©) Splunking> erik starttime::10/02/2004:00:00:00 endtime::12/02/200.

File Edit View Go Bookmarks Tools Help

<f-‘£] - < l:@ Q/l\[@ http://10.1.1.187:8000/?/sources hints/types/timebucketsresultspage ?page = 1&q=authenticated %20erik %20dsl08 1-052-253.sfo 1.dsl.spez ¥ @v
P Gmail & nytimes ™ washpost

Google | | 404 | | Liza | | splunk>: Projects | | NickMealy <Main < ...
{‘g ~ |"overflow:auto” div mozilla arrow mouse wheel

v 5’ aoverﬁow:auto adiv amozilla &arrow @mouse &wheel

O Splunking> erik startti... | (D http:/flocalho...h_results2.xsl | @ http://10.1.1...cale=minute& y [#SPL-299] gui should scroll.... || "] Gmail - Inbox

|} New Document D

Splunk erik starttime::10/02/2004:00:00:00 endtime::12/02/2004:23:00:00

Saved Splunks

About 1974 occurrences for.

erik starttime::10/02/2004:00:00:00 endtime::12/02/2004:23:00:00

EVENT TYPES = Start time: 10/02/2004 00:00:00 End Time: 12/02/2004 23:00:00 clear =)

1 Bar = 1... minute | ho d
200

???P?P?PP?PI

r?Pr??r?P?

alllnen Mals Inn

(click a bar to set the start time, and shift-click to set endTime)

::/opt/local/directorymonitor/processing/unknown/um
‘Tue 11/03/2004, 15:05:45 |

v type::imapd authenticated or autologout | Connected | Similar | Show Lo

splunk> (conf2o1

2006: OK, Except | Actually Need The Top 20 Hosts

Splunk 2.0 — Simple rollups are great!

Welcome Bob Log Il / My Account / Logout f Admin

Splunk sourcetype:unknown-2361862738 (=] |_]

PROFESSIONAL

CLEAR TIMERANGE THIS SPLUNK ~

¥START (05 /10/2004 02:00:00 - vEND 05/10 /2004 07 :00:00 =

Click bar to narrow results, or use Shift-Click to select a range 1 Bar =1 hour

2000- -2000

1000- -1000

I|||1 Hide Events by Time

Events (2,064) | Event Types] [Tags] | Source Types } | Hosts] | Sources
Showing 1-10 events (of 2,064, sorting by time) Page: 1 2 3 4 5 .. 206 207 Mext = Showing | 10 % |per page
1 63.215.194.75 63.215.194.75 - [10/May/2004:14:51:15.26+0000] "5IP/2.0 437 Request Cancelled” - -

eventtype::?158 v | Look up @ splunk.com | 05/10/2004, 06:52:00 | Similar | Related
sourcetype::unknown-2485684113 ~ | host:localhost | source:/optisplunkivar’spoolisplunkf/cescheduler2004-05-10.log | Show Source

2 63.215.194.75 63.215.194.75 - [10/May/2004:14:51:15.21+0000] "3IP/2.0 200 OK" - -
eventtype::?157 v | Look up @ splunk.com | 05/10/2004, 06:52:00 | Similar | Related
sourcetype:unknown-2485684113 ~ | host:localhost | source:/optisplunkivar’spoolisplunkfcescheduler2004-05-10.log | Show

Source

splunk> (conf2o1

2007: OK, But What | Actually Need Isn’t A Simple Rollup

Splunk 3.0 — Reportin
€ Splunk 3.3 - Windows Intemet Explorer

- \I i

S 4 |2 Splunk33 BB v o[y Gy

+ dashboards = ¢ reat!

Refresh ad Admin Preferences Help Logout

splunk> - | —

Last 3 months ~

(o024 evenis Dashboard Main ¥ Edit| Delete

Display: Chamt v ast refreshed: 08.21.2008 10:30:36

Security

WMI

The

Event

System.Web. HtipException:
OTHER

Information

Deletion

Cleanup

Starting

WMI ADAP was unable to retriey

m

4 S—

_ - _
: splunk> (conf2o1

(") NN N N NEgy N§

2008: OK, But That Reporting Was Pretty Limited...

The report results | actually need to see look like this...
Splunk 4.0 — introduction of Search Language

(what the...)
The Splunk search language (SPL) is astonishing, but at first it looks both too complicated

and also like it’s just more “simple reporting”.
It does simple things but it can do arbitrarily complicated, idiosyncratic and messy things.

(acknowledge the Splunk 5.x, 6.x — faster, better, easier, prettier, data-modelier, clusterier,
not-appearing-in-this-talk-ier)

: splunk> conf2oié

Why Is The Search Language So Weird?

The engineers who created the Splunk search language had to solve two different
problems.

1) Give users a language to express what they need no matter how tweaky and
insane it is.

2) Make it so as much of the work as possible can be farmed out to the indexers.

Arguably, weirdly, another name for #2 is...
“the stats command”

(with chart, timechart, top and all the si* commands just being stats wearing a
funny hat.)

splunk> (conf2o1

The Good

Timechart

Stats

Transaction

splunk> (conf2o1

Get On With It Kid

This talk is for anyone who has ever said things like:

OK but in the results | actually need to see, each row is a <higher
order thing> where the pieces come from different events.

| need to take two searches and mash them up!

| have to describe it in English and do you even want to hear it? it’s
pretty complicated.

splunk> (conf2o1

You Know...Grouping!

- \|<uvr'.v|*‘,2
| mARR duld e ‘f'.)n(
LoRANS w_,'g ;f?-‘)\“_\}_\. M;’:‘: Ak

L splunk> (conf2o1

Actually, This Talk Is A Little Non-trivial

(assuming we ever get to it)
This talk is for anyone who has ever said one of those things
But then also said

.. And I don’t think | can just “use stats” here because <reasons>

splunk> (conf2o1

“Use Stats”? Pls Explain

You may have seen this flowchart
in the docs. It tries to get you to
“use stats”, as if it were that simple.

If you have scoffed at this flowchart,
you are in the right talk.

Do you need to see the
full text of the grouped
events?

(I kind of wrote this flow chart,

so the scoffing is OK by me).

splunk> (conf2o1

So You Want To Group Some Things

Splunk has had amazing ability to do basically anything, since 4.0.
Group anything by anything, turn it inside out and wash it through
anything else. Rinse, repeat.

But it is a brutal learning curve.

One of the biggest pitfalls is how people go the wrong way, right
away, away from core reporting functionality and into search
commands designed for edge cases.

splunk> (conf2o1

The Names Do Us No Favors Here

What would SQL do?
-- you will search the Splunk docs for “join”.

Hey the Splunk docs are using the generic word “transaction”.
-- you will search for more about "transaction".

| need to like... tack on another column.
-- oh awesome there’s an "appendcols” command!

The truth is that lookups and stats should be your first tools, and append/join
and even transaction should be last resorts.

splunk> (conf2o1

Great!

You convinced someone not to use
join or append.

(Around the 30t time, you will
create a flowchart)

THEY SAY THE DEFINITON OF
INSANITY 1S DOING THE SAME
THING OVER AND OVER AND
EXPECTING DIFFERENT RESULTS.

YOU'VE BEEN QUOTING THAT
CUCHE FOR YEARS. HRAS
IT CONVINCED ANYONE TO
CHANGE THEIR MIND YET?

i

splunk> (conf2o1

(START]

Flowchart !
circa 2011

Does one subset of
data remain static or
rarely change?

(Use a lookup.)

Can you write the search
criteria as a simple
disjunction?

Do you want to break up
groups larger than a
certain duration?

(Use 'transaction'.)

Are these fields
recycled? (Otherwise,
they are unique.)

Can you define the
grouping with a
conditional eval

expression?

Can you define the
grouping with a field
value, such as an ID?

(Try 'join’ or ‘append'.)

Can you define the
grouping with a pattemn,
such as a start or end?

Do you need to see the
full text of the grouped
avents?

(No single command works.) (Use 'stats'.)

splunk> (conf2o1

Flowchart —
circa 2011

Can you write the search
criteria as a simple
disjunction?

Can you define the
grouping with a W
conditional eval

expression?

(Use 'stats'.)

splunk> (conf2o1

So you think you need to "join" two search results together....

Flowchart Attack

»(OK fine. Use append or join)

Here is a more recent take on a flowchart.

define the grouping
with a field value?
like an ID?

It still omits subsearches. =(

Is one of the
facets a generating
command?

What if we
se a little conditiona
eval to clean up
the ids?

It still omits lots of advanced things,

write the search
p

III

What if we use,

And in place of jargon like “conditional eva
it now just refers to “magic”. Twice.

So let’s back away slowly.

pattern, such as YES
a startor end?,

Maybe flowcharts are bad. G

You have been
eaten by a grue

splunk> (conf2o1

What’s Wrong With The Join And Append Commands?

Fundamentally slow, and as soon as you push any real volume of data through them,
broken.

Truncation if you exceed 50,000 rows. (and/or oom anxiety)
Autofinalized if you exceed execution time.

2 Jobs instead of 1.

Potentially getting the same data off disk twice.

Extra overhead on job start.

You might not even *realize* that you're hitting autofinalize and row-truncation limits,
but they are nonetheless making your results wrong.

Breaking Map/Reduce, OR making it less efficient. l.e. forcing splunk to pull more data
and processing back to the search head.

As a kind of “worst-practice”, it proliferates quickly.

splunk> (conf2o1

What’'s Wrong With The Transaction Command?

Bristles with confusing edge-case logic. (what’s this button do?)

Always breaks mapreduce, ie forces Splunk to pull raw rows back
to the search head.

If we’re ever pulling raw event rows back to the search head...

...OK what are we even doing? For “dense” reports you may have
accidentally created a big “grep deployment”.

splunk> (conf2o1

IOW: Surface Roads Are A Last Resort

splunk> (conf2o1

What's Wrong With Map And Multisearch?

| don’t know. What’s wrong with nuclear weapons?

They kill a few too many things
Someone else has to clean up the strontium-90

(Almost) never the simplest tool for the job

splunk> (conf2o1

Lookup

Is one side of the data essentially static, or changing so slowly that you
could run a search once a day to take a new snapshot and that would be

good enough?
YES == Use a lookup

(Do think a bit about whether you'll need to search older data using the
old mappings though.)

No = No lookup for you.

splunk> (conf2o1

Subsearches

True actual subsearches are not fundamentally evil, although they certainly do
have limits.

(Other things like join and append use square-bracket syntax, but these are only
called “subsearches” because nobody ever came up with any other name.)

Is one side always going to be a relatively sparse subset relative to the whole
sourcetype?

AND do you need this sparser side pretty much only because you need some
set of field values from it in order to narrow down the results on other side?

YES == subsearch!
NO == no subsearch for you.

splunk> (conf2o1

Join And Append

Is one side coming from a generating command, ie does it begin with a
leading pipe? Eg, dbquery, Idapsearch, tstats.
YES ==You need to use join or append*

NO == Believe it or not, you probably don’t need join or append.

Read on.

* Unless that command has its own "append=t" argument, in which case you might be
better off using that. eg tstats and inputlookup

splunk> (conf2o1

Transaction

Is the only reliable way you can define the boundaries from one group to the
next, defined by some kind of "start event" or "end event"?

YES = You can use transaction, but stats might be better anyway.

No = OK so you have id(s). Are they reused ever?
YES = you might as well use transaction

No = OK, the Id’s aren’t reused but are there some transitive shenanigans
going on with these id’s?

YES = you might as well use transaction
NO = o0_0O. This was never a transaction use case in the first place. Stats!

splunk> (conf2o1

Map Or Multisearch

Do you totally feel like you need a map command or a multisearch
command?

YES. OK, er, wait here a minute. Breathe deeply. You might be right
but lets get you some help on answers.splunk.com

splunk> (conf2o1

OK, But | Don't Think | Can Use Stats Here Because Y

(The rest of this talk will be Nick trying to solve for Y)

splunk> (conf2o1

Example #1 - Newbie

... because | found join and join does exactly what | need.
sourcetype=A | joln myIdField [search sourcetype=B]

This is magnificently, marvelously wrong.

So wrong it’s hard sometimes to even remember how often you can find
people doing it.

sourcetype=A OR sourcetype=B
| stats <various things> by myIdField

splunk> (conf2o1

Example #2 — (Still Too Easy)

| don't think | can use stats here because one side calls it "id" and the
other calls it "userld".

Piece of cake. use coalesce()
sourcetype=A OR sourcetype=B

| eval normalizedId=coalesce (1d, userId)

| stats count sum(foo) by normalizedId

splunk> (conf2o1

Example #3 - Newbie

Actually | can’t use coalesce() because... <reasons>.

Yeah, | lied a little there. You can use coalesce but don’t. Use case() use eval().

Coalesce is great until you have a day where autokv accidentally throws in a field by the
same name in an unexpected place so your coalesce() grabs the wrong one and now your
data is wrong and.... Best of all you might not even find out about this problem for a while.

And the overall logic to get the right id often gets one or two little wrinkly nuances in it.

-- Coalesce is a hammer. You might hit the right nail.
-- If and Case are nailguns. The nail they’re hitting is listed right there.

| eval id=case (sourcetype="A", id, sourcetype="B",otherId)
| stats count sum(foo) by id

splunk> (conf2o1

If() And Case() — Be Explicit. Be, Be Explicit

Sourcetype Ahas device=EEC0B84221E2B31
Sourcetype Bhas macAddr=0B84221E2B31
| eval macAddr=case (sourcetype="A", replace (device, " EEC",""),

sourcetype="B", macAddr)

In theory you could run the regex replacement on both sides and then coalesce(), but what
if your repair accidentally damages the other side? Oh yea look at that, it could.

This represents the first glimpse of a whole world of “the thing | need to do one side seems
to damage the other side”. We haven’t seen the last of this.
And “conditional eval” stuff is often the solution.

splunk> (conf2o1

Sidebar — Trying Things Yourself

Stats can also be a little Swiss army knife to help you test out search language behavior.

| stats count | fields - count

Will make a single row, with no fields at all.... ?

Let’s say you’re wondering about that mac address scenario. Here’s a search that generates it.
stats count

eval foo=split (“EEC0B84221E2B31,0B84221E2B31")

|

|

| mvexpand foo | streamstats count

| eval device=if (count==0, foo) | eval sourcetype=if (count==0,"”A")
| eval macAddr=if (count==1, foo) | eval macAddr=if (count==1,”B"”)

| fields - foo count

(OK Fine, there’s a new command called “makeresults” too that does the same thing. :P)

splunk> (conf2o1

Example #4 — Gluing Things To Other Things

| don’t think stats is right because | just need to just glue some result rows together.

Say you want to calculate one thing from one set of fields in one set of events, and at the same time
calculate another thing from another set of fields in some other events.

| don't really need to "join" them, | just want to... what's the word.... APPEND!

sourcetype=A | stats avg(session length) as length

+

sourcetype=B | stats dc(sessions) as sessions dc(users) as users
sourcetype=A | stats avg(session length) as length

| append [sourcetype=B | stats dc(sessions) as sessions dc(users) as
users|

splunk> (conf2o1

Example #4 — Cont.

| don’t think stats is right because | just need to just glue some result rows together.

No, you can still use stats. It’s OK- stats doesn’t care. It will effectively calculate your two
things separately, handle the gaps just fine, then glue them together at the end.

sourcetype=A | stats avg(session length) as length

+

sourcetype=B | stats dc(sessions) as sessions dc(users) as
users

sourcetype=A OR sourcetype=B
| stats avg(session length) as length dc(sessions) as sessions

dc (users)

splunk> (conf2o1

Example #5 — Gluing + Joinery

| want to calculate one thing from one set of fields in one set of events, and at
the same time calculate something else for which | have to kinda... “join”

things from both sides.
sourcetype=A | stats sum(kb) by ip

sourcetype=B | stats dc(sessionid) by 1p

AND I like join because | need to be careful -- sometimes sourcetype B has
another field also called "kb“!

(or maybe sourcetype=A has a field called sessionid.)

splunk> (conf2o1

Example #5 — Gluing + Joinery, Cont.

Solution: needs more nailgun

sourcetype=A | stats sum(kb) by ip
+
sourcetype=B | stats dc(sessionid) by 1ip

sourcetype=A OR sourcetype=B

| eval kb=if (sourcetype="B",null (), kb)

| eval sessionlId=if (sourcetype="A",null(),sessionId)
| stats sum(kb) dc(sessionid) by ip

splunk> (conf2o1

Example #5 —About Those Inline Expressions

sourcetype=A OR sourcetype=B

| eval kb=if (sourcetype="B",null (), kb)

| eval sessionId=if (sourcetype="A",null (), sessionld)
| stats sum(kb) dc(sessionid) by 1ip

To be fair, that sourcetype="“X" is standing in for what might be a more complex expression.
Often you’ll want to pull it out as its own “marker field”. Clarity above all things.

| eval isFromDataSetl=if (<ugly expression>,1,0)
| eval kb=if (isFromDataSetl,null (), kb)
|

splunk> (conf2o1

Example #6 — Timerange Shenanigans

But the two sides have different timeranges so | need join/append.

| need to see, out of the users active in the last 24 hours, the one with the highest number of incidents
over the last 30 days.

sourcetype=A | stats count by userid (last 24 hours)

sourcetype=B | stats dc(incidentId) by userid (Last 7 days)
If it’s a join you’re leaning towards, this may well be a subsearch use case hiding in plain sight.

sourcetype=B [search sourcetype=A earliest=-24h@h | stats count by
userid | fields userid]

| stats dc(incidentId) by userid
|

splunk> (conf2o1

Example #7 — More timerange Shenanigans

| have different timeranges but | can't use a subsearch because my outer results need some values from that "inner" search.
Specifically, | need the hosts that the users have been on in the last 24 hours.

sourcetype=A | stats count wvalues (host) by userid (-24h)

sourcetype=B | stats dc(incidentId) by userid (-7d)

No problem. Stats.
sourcetype=A OR sourcetype=B
| where sourcetype=B OR (sourcetype=A AND time>relative time (now(), "-24h@h"))
| eval hostFromA=if (sourcetype=A,host,null())
| stats dc(incidentId) values (hostFromA) as hosts by userid

It’s a little ugly and yes, a fair bit of events from “A” get thrown away. But no OOM risk! No autofinalizing!

splunk> (conf2o1

Example #8 — IDK. Still Pretty Sure | Need Join

| have: Nope! Conditional eval + Stats.
sourcetype = a | table time, id
sourcetype = b | table bid, cid
c | table cid

sourcetype=a OR sourcetype=b OR

sourcetype=c

sourcetype = eval id=if (sourcetype="b",bid, id)

|
| eval

a time=if (sourcetype="a", time,null (
))

| stats values(cid) as cid
values (a time) as a time by id

sourcetype=a
Then left join with:
sourcetype=b, with a.id = b.bid
Then left join with:
sourcetype=c with b.cid = c.cid

| want to end up with: a._time, a.id, b.bid,
c.cid, so clearly join right?

splunk> (conf2o1

Sidebar — Values(foo), First(foo), “By Foo”

It takes a while to learn how to choose between

| stats sum(kb) by fieldl field2 field3

S
| stats sum(kb) values(field3) as field3 by fieldl field?2

VS
| stats sum(kb) first(field3) as field3 by fieldl field2

Do | need it as a group-by field?
YES - Great. Just make sure it’s never null or you'll be losing rows unexpectedly.(iow you may need a fillnull)

Actually it seems kinda wrong that way - it probably is. Try values()

Avoid first() and last() and earliest() and latest() unless there are other values in there and you specifically want to ignore them.

If you’re confident other values will never exist.... Even then | say use values() anyway.

splunk> (conf2o1

Example #9

But | need the raw event data rolled up so this means | need the
transaction command.

Well... when pressed the person may admit that they don't actually care about
the raw text, they just like seeing it for debugging.

If that’s true, meet a quick and dirty trick:

foo NOT foo

| append [search SEARCHTERMS | stats count sum(kb) as
kb list(raw) as raw min(time) as time by clientip
host]

splunk> (conf2o1

Example #10

| just want to group things by this ID, and transaction seems like the tool for the job.

It does feel right, but it’s very wrong!

If you’re using transaction but you’re NOT using any of its fancy arguments like maxevents
or maxspan or startswith or endswith, AND you don’t need to see the raw events,

and then after the transaction you’re doing something like stats, chart, timechart, you can
and should use stats instead.

Transaction forces Splunk to bring all these events back to the server, and in a lot of simple
cases it’s just not necessary.

splunk> (conf2o1

Example #10 — Cont.

| transaction fieldl field?
| stats sum(foo) count by fieldl field?

... just dissolves away and should just be
| stats sum(foo) count by fieldl field2

Which is so weird it seems like I’'m cheating, so lets look at more
complicated examples.

splunk> (conf2o1

Example #10 — Cont.

Aha! | need the “duration” field!

| transaction fieldl field?2
| stats sum(duration) as duration by fieldl field?

Nope. Use stats.

| stats min(time) as start max(time) as end by
fieldl field?
| eval duration=end-start

splunk> (conf2o1

Sidebar — Stats And _time

In case that

| stats min(time) as start max(time) as end

Looked funny to you.

You might say use first() and last() because they're very slightly faster. You’d be right.

And you might say that the event rows coming into stats will always be reverse-time ordered and you’d
be.... WRONG. WAT.

Outside of “verbose mode”, the event rows are mostly in reverse-time-order but it’s not guaranteed.
So use first() and last()... pretty much when you have an explicit sort beforehand. <cue minor uproar>
If I'm positive there’s only one anyway | still use values() (so if that assumption breaks it shows up fast).

Earliest() and latest() — they make my head hurt. | worry about them getting pasted into places where
_time is not on every row. So... this is why | use max() and min() kind of a lot.

splunk> (conf2o1

Sidebar In A Sidebar

Beware earliest() and latest() when _time isn’t present on every row.

stats count

eval name=split ("agnes,mildred,elihu, ruth",",")
mvexpand name

streamstats count

eval time=if (count=="3",1423231321,null()) | stats count
arliest (name)

PO — — — — —

_time is of course always present on raw events, but stats often processes rows that have
already been through some reporting command... And the more you use stats in the way
I’m talking about in this talk, the more likely you’ll give it some rows with no _time’s.

splunk> (conf2o1

Example #12

| think | need transaction because
... | have a start event. ...| have an end event,

... my supposedly unique id’s actually get reused

If you need these things, you most likely *could™ use clever constructions with eval,
streamstats and stats to do the same thing.

The catch — even though streamstats is streaming non-transforming, the rows
coming into it always have to get brought back to the search head.

If you’re going to break map-reduce anyway, go ahead and use transaction if you
prefer it.

splunk> (conf2o1

Example #13

But.. | have to do this thing to one side to make it how | want, and that thing involves
one or more search commands that would irreparably damage the other side.

FIRST -- subsearch use cases can hide here. Especially if one side is sparse/fast/short.

but failing that sometimes this sort of thing does sometimes force you over to
join/append.

...but not always.

splunk> (conf2o1

Example #13 — Cont.

The smaller side needs some search language
that is just very expensive or scary (eg xmlkv)

and we don't want to run that on the other side.

Sometimes you can conditionally
eval your fields to hide them from
the scary thing, then put them
back after.

"T BUNK Nou SHOWD 8& MORE
EXPLICIT HERE N STEP TWO, "

splunk> (conf2o1

Example #14

Sorry smart guy, | literally need to join the result output of two *different*
transforming commands.

sourcetype=A | chart count over userid by application
sourcetype=B | stats sum(kb) by userid

| need to end up with the eventcounts across the 5 applications, plus the total KB
added up from sourcetype B. | need stats behavior AND | need chart behavior!

So | need appendcols! QED!

splunk> (conf2o1

Example #14 — Cont.

Nope. Stats! Remember that most transforming commands are just stats wearing a funny hat. In
other words with a little eval, a little xyseries and/or untable we can often refactor both searches to
have stats commands.

Refactor the chart search into a stats search plus... some other stuff to make the rows look the same.
(In this case an xyseries)

| chart count over userid by application

Is equivalent to

| stats count by userid application
| xyseries userid application count

splunk> (conf2o1

Example #14 — Cont.

Now lets forget about xyseries for the moment. Let’s try and get one stats command to do the work of
both the ones we have.

A: | stats sum(kb) as kb by userid
B: | stats count by userid application | <xyseries magic>

We make a disjunction. OK but stats will throw away rows with null application values so we have to
workaround that. Ick.

sourcetype=A OR sourcetype=B
| £fillnull application value="SO MUCH NULL"

| stats sum(kb) as kb count by userid application

| eval application=if (application="SO MUCH NULL",null (), application)

splunk> (conf2o1

Example #14 — Cont...

sourcetype=A OR sourcetype=B
| fillnull application value="NULL"
| stats sum(kb) as kb count by userid application
| eval application=if (application="NULL",null(),application)

ok now we have fields of userid application kb count
and we need fields thatare userid kb applcount app2count app3count appé4count

if only we could do two "group by" fields in the chart command!!
chart count over userid kb by application

OMG We can't!!l <sad trombone>

splunk> (conf2o1

Example #14 — Cont....

Oh no wait we can. It’s just a bit, er, hideous.

sourcetype=A OR sourcetype=B
| fillnull application value="NULL"
stats sum(kb) as kb count by userid application
eval application=if (application="NULL",null (),application)
eval victory trombone=userid + ":::" + kb
chart count over victory trombone by application

eval userid=mvindex (victory trombone,0)

|
|
|
I
| eval victory_ trombone=mvsplit(victory trombone,™:::")
I
| eval kb=mvindex (victory trombone, 1)

|

table userid kb *

splunk> (conf2o1

Example #15 — The Handwave

Complicated thing that seems to need a transforming command on only one of the 2
sides, but that can be rewritten to use eventstats and/or streamstats and eval in some

mind-bending way.
These exist.

Whether the end result is worth the warping of your mind is perhaps a different question.

splunk> (conf2o1

OK, Now We Have The Results. What Then?

Why, filter and report on them of course!

Once we get these “higher order” rows, your users will get used to them and want to start
“doing things” with them. What will emerge:

One class of searchterms users intuitively expect to use, that apply only to the higher-
order entity.

Another class of... filtering / categorizing / tagging that users need to apply at the raw
event level, and/or that need to bubble up to the final report level.

Even a third level of filtering if you include even higher-level rollup reports at the top.

< raw event search> (level 1)
| stats sum(foo) as foo values(bar) as bar .. by idl id2
|
|
|

search <more filtering at the higher level> (level 2)
chart count over idl by bar
search <omg even more filtering> (level 3)

2t splunk> conf2oié

Some Advice

Rule 1 — Pretty much all event-level filtering has to be in a subsearch.

Rule 2 - If there's more than one event-level subsearch term, they have to be separated by
OR's. And then at the end you have to filter again with the same terms (without the OR's).

Why? No row left behind!

You have to beat this into your brain a little bit because there's a strong temptation later to
sneak simple search terms into the event-search, or to put things in the subsearch as
AND'ed terms instead of OR'ed terms.

Oh and eventtypes can come in handy. Let them ride up on raw event rows then use them
as filters at the grouping level.

splunk> (conf2o1

Appendix
There are more slides, but you’ll have to read them yourself.

Go forth and do great things.

If you have questions, track me down. If you want to hear endless stories about the
early or middle history of Splunk, buy me a drink.

splunk> (conf2o1

T

e x*f“' 4

RN 3
ST S o 5
ety NS
:N
A

&
NG
oD
S5
(o)

B
Ot
Tofes

"GET /p,

.38 Safari s

7]
FIADFF4 HTTm

D=526¢

THANK YOU

s
2 o o S
PR
ST,
N

n 18:1

&JSESSTONI,

29

10774

-0,

tey
e
7o,

R

223 "http:,,,
B35, 7 d=BOUQUET
S en-us)

splunk“’>

Oh Hey

You clicked past the fake ending slide.

Nice work.

There are some more slides with more examples.

splunk> (conf2o1

Example #16 — Complex Call Flow

UK Customers are reporting that they call in from overseas and get transferred around and get hung up on.

Q1: Where do they get disconnected?

‘cdr_events [search "cdr events callingPartyCountryCode="44" | fields
"id fields ']
| sort 0 - dateTimeConnect

| stats first(finalCalledPartyNumber) as terminatingCalledPartyNumber
values (eventtype) as eventtype values (originalCalledPartyNumber) as

originalCalledPartyNumber values (callingPartyNumber) as callingPartyNumber
sum (transfers) as transfers by globalCallID callId

globalCallID callManagerId globalCallId_CluEterID
| search transfers>2 eventtype="incoming call" callingPartyCountryCode="44"

| chart count as calls over terminatingCalledPartyNumber | sort 0 count
desc

splunk> (conf2o1

Example #17 — Simplify

Sometimes when there’s just a whole lot going on, you can break it into two things and bake one
of them out as a lookup.

| want to know the phones that have NOT made a call in the last week (and have thus generated
no data) | could do a search over all time, then join with the same search over the last week.

Better - make a lookup that represents “all phones ever” (i.e. with that expensive all time search).
Then:

<terms> | eval present=1| inputlookup all phones ever append=t
| stats values (present) as present by extension
| search NOT present=1

splunk> (conf2o1

Example #18 — Call Concurrency

How long is this long tail? | have no idea.

Let’s leap out to something pretty far out. Concurrency.
Splunk has a concurrency command. It’s neat.

But you usually end up needing concurrency by someField.

| need to calculate the concurrency of two different things, in one chart. But concurrency
has no splitby so | need to append these and then re-timechart them

No silly, you can use eval, mvexpand, fillnull, streamstats,
timechart, filldown and foreach.

=/ (see next slide)

splunk> (conf2o1

Example #18 — Call Concurrency, Cont.

‘cdr_events®

| eval increment = mvappend("1","-1")

| mvexpand increment

| eval time = if (increment==1, time, time + duration)

| sort 0 + time

| fillnull SPLITBYFIELD value="NULL"

| streamstats sum(increment) as post concurrency by SPLITBYFIELD

| eval concurrency = if (increment==-1, post concurrency+l, post concurrency)

| timechart bins=400 max (concurrency) as max concurrency last (post concurrency)
as last concurrency by SPLITBYFIELD 1imit=30

| filldown last concurrency*

| foreach "max concurrency: *" [eval <<MATCHSTR>>=coalesce('max concurrency:
<<KMATCHSTR>>', '"last concurrency: <<MATCHSTR>>')]

| fields - last concurrency* max concurrency*

splunk> (conf2o1

