Quis Custodiet Ipsos Custodes? (Who Watches The Watchmen?)
Or, How Do You Know When Splunk Stops Searching?

Tom Kopchak
Hurricane Labs

Tim Baldwin
Hurricane Labs
About Us

Tom
tom@hurricanelabs.com

Tim
tim@hurricanelabs.com
About Hurricane Labs
Splunk And You
What Will Be Covered

• Best practices around Splunk monitoring and alerting
• Types of monitoring available
• The difference between monitoring and *good* monitoring
What Will NOT Be Covered

• This is NOT an end-to-end walkthrough

• We will NOT tell you which monitoring and/or alerting platform to select

• We will NOT show the specific configuration file changes that will be needed
How Many Of You Have Heard This Before?

- Make it go faster!
- My saved searches aren’t running.
- Splunk is broken.
Wouldn’t it be awesome if users never experienced a Splunk issue?
How Does Sam Do It?

• Who is Sam? Sam is a (gender neutral) Splunk ninja
• She used to be reactive
• Now, he is proactive
Sam’s Story

- Sam used to just assume that all problems could be solved by users writing better searches.
- As she gained more experience, she learned that is not always the case.
- She now monitors Splunk so that she can solve problems more quickly, often before her users even notice the issue.
What Does Sam Monitor?

- Splunk Data
 - Splunk Saved Searches/Splunk API

- Splunk-related Processes/Services
 - Splunk API/Operating System agent

- Splunk-related OS operations and/or settings
 - SNMP/OS Agent

- Normal OS operations and/or settings
 - SNMP/OS Agent
Problem: Sam’s user called up to complain about not being able to find firewall data.

Sam spent two days trying to “help” the user write a better search to “find” the data.
Finally found that the data stopped flowing into Splunk

Fixing the issue was easy once it was discovered

Sam realized that (s)he could have prevented a ticket if he/she was monitoring for data that stopped coming in
Monitor Splunk Via Splunk

Splunk Searches
• Broken Sources Sanity Check
• `index=_introspection`
• `| REST`

DMC
• Splunk Distributed Management Console
• Processor and Memory
• Licenses - Expiration and Quota Usage
• Missing forwarders
• Disk Usage
• Processing Queues
• Search Peers
Finding When Data Stops Flowing

Broken Sources Sanity Check
- Runs a search using “| metadata” to pull last time that a host sent data
- Is “tunable” using a lookup table
- Available on splunkbase: https://splunkbase.splunk.com/app/3247/index=_introspection

- Resource usage on a per-search or system-wide basis
- Disk utilization
- Example in the Appendix

REST
- Pull information about Splunk system health, license utilization, etc.
- Example in the Appendix
Splunk Distributed Management Console (DMC)

Splunk Enterprise Server 6.3.2
Linux, 3.76 GB Physical Memory, 4 CPU Cores
Mode: standalone

INDEXING RATE
5.03 KB/s

LICENSE USAGE
Today: 0%

DISK USAGE
Disk: 15%

CONCURRENT SEARCHES
5 Searches

CONCURRENT SEARCHES BY TYPE
scheduled
ad-hoc
report acceleration
DMC Distributed Mode

Overview
The Distributed Management Console monitors important aspects of your Splunk Enterprise deployment. Learn More

Mode: Distributed

11 Indexers on 11 Machines
9 Search Heads on 9 Machines

1 instances unreachable

INDEXING RATE
4.14 MB/s Total
423.77 KB/s Average

RESOURCE USAGE
CPU: 10 0 0 1 21.06% average
Memory: 10 0 0 1 27.60% average

CONCURRENT SEARCHES
46 Total
5 Average

RESOURCE USAGE
CPU: 9 0 0 0 5.29% average
Memory: 9 0 0 0 8.33% average
DMC Alerts Setup

Platform Alerts Setup

Manage Distributed Management Console platform alerts. [Learn More](#)

<table>
<thead>
<tr>
<th>Name</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC Alert - Abnormal State of Indexer Processor</td>
<td>Edit Advanced Edit Enable</td>
</tr>
<tr>
<td>One or more of your indexers is reporting an abnormal state.</td>
<td></td>
</tr>
<tr>
<td>DMC Alert - Critical System Physical Memory Usage</td>
<td>Edit Advanced Edit Enable</td>
</tr>
<tr>
<td>One or more instances has exceeded 50% memory usage.</td>
<td></td>
</tr>
<tr>
<td>DMC Alert - Expired and Soon To Expire Licenses</td>
<td>Edit Advanced Edit Enable</td>
</tr>
<tr>
<td>You have licenses that expired or will expire within 2 weeks.</td>
<td></td>
</tr>
<tr>
<td>DMC Alert - Missing forwarders</td>
<td>Edit Advanced Edit Enable</td>
</tr>
<tr>
<td>One or more forwarders are missing.</td>
<td></td>
</tr>
<tr>
<td>DMC Alert - Near Critical Disk Usage</td>
<td>Edit Advanced Edit Enable</td>
</tr>
<tr>
<td>You have used 80% of your disk capacity.</td>
<td></td>
</tr>
<tr>
<td>DMC Alert - Saturated Event-Processing Queues</td>
<td>Edit Advanced Edit Enable</td>
</tr>
<tr>
<td>One or more of your index queue is reporting a fill percentage, averaged over the last 15 minutes, of 90% or more.</td>
<td></td>
</tr>
<tr>
<td>DMC Alert - Search Peer Not Responding</td>
<td>Edit Advanced Edit Enable</td>
</tr>
<tr>
<td>One or more of your search peers is currently down.</td>
<td></td>
</tr>
<tr>
<td>DMC Alert - Total License Usage Near Daily Quota</td>
<td>Edit Advanced Edit Enable</td>
</tr>
<tr>
<td>You have used 90% of your total daily license quota.</td>
<td></td>
</tr>
</tbody>
</table>
Problem: Sam’s user called up to complain about not being able to find firewall data.... Again

Sam didn’t get an alert from the Broken Sources Sanity Check

Sam reverted to the default assumption that the user was running poor searches
Sam finally found that the data stopped flowing into Splunk

- Same problem as before

But wait - didn’t we have monitoring for this?!?
What’s Going On?

The Broken Sources Sanity Check didn’t alert because the search was getting skipped
Monitor Splunk Outside Of Splunk

Direct REST API

• Use REST API endpoints to show and alert on certain information
 • Listens on port :8089 by default
 • Could replace some of the “| REST” searches to reduce the search concurrency

• Splunk Messages

• Licensing information

• Deployment Client status
 • Check that specific clients are checking in

• Indexer Cluster Search factor/Replication Factor

• Indexer Cluster Node status

• Many others
So, We Should Be Good, Right?

Monitoring Splunk using Splunk Searches

Monitoring Splunk outside of Splunk (REST API)
Monitor Splunk-related OS Settings

• **Problem:** Sam’s user called up to complain about not being able to find firewall data…. Again?!
• She did not get an alert from the Splunk Searches
• But, he did get an alert from the Splunk REST API checks:

Splunk GUI message: “Cannot write data to index path "/mnt/splunk_warm/firewall/db" because you are low on disk space on partition "/mnt/splunk_warm". Indexing has been paused. Will resume when free disk space rises above 5000MB.”
Monitoring Vs. Good Monitoring

There is a difference

Alerts should be:

• Relevant
• Timely
• Actionable
Monitor Splunk-related OS Settings

Found that the splunk_warm partition (/mnt/splunk_warm) has very little disk space available.

But wait - didn’t the REST API check notice this?!?

─ Yes, it did - but not timely
─ Sam needs to know BEFORE Splunk stops working

Sam realized that (s)he could have prevented a ticket if he/she was monitoring for Splunk-related partitions and processes.
Disk Usage
- Could replace the index="_introspection" searches to reduce search concurrency
- $SPLUNK_HOME disk space
- Splunk hot/warm/cold disk space

Processes
- Splunk processes
- Syslog-ng processes
- API processes (Java bridge, for example)

Listening Ports
- 443 or 8000
- 8089

HTTPS checks
- Cert expiration
So, We Should Be Good, Right?

- Monitoring Splunk using Splunk Searches
- Monitoring Splunk outside of Splunk (REST API)
- Monitor Splunk-related OS operations settings
Problem: Sam’s user called up to complain about not being able to find firewall data.... Again!!!!

She did not get an alert from the Splunk Searches

He did not get an alert from the Splunk REST API checks

There was no alert from any of the Splunk disk or process monitoring checks
Finally found that the root partition (/ or C:\) of the operating system filled up

But wait - didn’t Sam have disk space monitoring?

Sam realized that (s)he could have prevented a ticket if he/she was monitoring for issues on the Operating System
General (Non-Splunk) Operating System Things

- Disk Space and mount points
- Disk/RAID health
- SSHD Process
- Port 22 listening
- Server uptime
 - Alert if system was unexpectedly rebooted
 - Alert if system hasn’t been getting rebooted during patching cycle
- Memory usage
- CPU usage
- Load Average
- System Time - Important that NTP is working for Splunk
- Network interface(s)
Sam’s CIO was giving live demo to the CEO to request funding for a larger Splunk license.

Sam was alerted that firewall logs stopped coming in and fixed the issue within minutes.

CEO was so impressed with the cool stuff they were doing with Splunk that she gave them funding to double their Splunk license!
Sam No Longer Has Users Calling With Issues

- Sam is now alerted before the users notice
- Sam is proactive
- We should all be more like Sam
What’s Next? Active Response

• Monitoring system can trigger proactive action
• This is the future state of monitoring
• Examples:
 – Restart SSHD if cannot connect
 – Run ntpdate if time is not synced with NTP
 – When disk space gets low, automatically open a ticket with the storage team
 – Reauthenticate API when the API key expires
 – Restart Splunk if no splunkd processes are running
Wrap Up And Questions
Appendix – Slide #15

Slide # 15

• Broken Hosts App for Splunk:

• https://splunkbase.splunk.com/app/3247/
Appendix – Slide #15 (Continued)

Slide #15:

index=_introspection search example:

- index=_introspection sourcetype=splunk_resource_usage component=Hostwide | timechart Median(data.cpu_system_pct) AS "System CPU" Median(data.cpu_user_pct) AS "User CPU"

| REST search example:

- | rest /services/licenser/licenses

Additional REST endpoint information:

Appendix – Slide #21

Slide # 21

• **Simple:** index=_internal sourcetype=scheduler status=skipped

• **Advanced:** index=_internal sourcetype=scheduler status=skipped | eval reason=if(like(reason, "%historical concurrent system-wide%"),"system-wide concurrent", reason) | timechart span=30m count by reason
Slide #25

- **Relevant**
 - Reduce false negatives and reduce false positives
 - Never alert when it’s not a problem and always alert when it is a problem

- **Timely**
 - Be as proactive as possible
 - Not too early but not too late

- **Actionable**
 - If there’s nothing that can be done, then it should not be an alert
 - We may want to know about trending issues if they persist
Appendix – How We Monitor

Checked with SNMIP:
- SNMP Time
- SNMP Environment Status
- Disk/Partition Free Space
- Memory/Swap Usage
- Load Average
- Uptime
- Interface Status

Checked with HTTPS connection:
- HTTP/HTTPS availability
- CVE-2009-3555 (TLS Renegotiation) Vuln
- CVE-2011-3389 (BEAST) Vuln
- CVE-2014-0160 (Heartbleed) Vuln
- CVE-2014-3566 (POODLE) Vuln
- SSL Certificate Expiration

Checked with Splunk Search:
- Broken Sources Sanity Check
- DMC Alerts
- Notable Event Outage

Checked with REST API:
- License Master Connection
- Splunk Messages
- Concurrent Searches
- Search Peer Connection
- Deployment Client Status
- License Usage
- Cluster Replication Factor Status
- Cluster Search Factor Status
- Cluster Peer Status
- Cluster Maintenance Mode

Checked with port scan:
- Splunkd TCP Port (8089) available
- SplunkWeb Port

Checked with host agent:
- SSH Port
- Splunkd Process
- Syslog Daemon
THANK YOU