Disclaimer

During the course of this presentation, we may make forward looking statements regarding future events or the expected performance of the company. We caution you that such statements reflect our current expectations and estimates based on factors currently known to us and that actual events or results could differ materially. For important factors that may cause actual results to differ from those contained in our forward-looking statements, please review our filings with the SEC. The forward-looking statements made in the this presentation are being made as of the time and date of its live presentation. If reviewed after its live presentation, this presentation may not contain current or accurate information. We do not assume any obligation to update any forward looking statements we may make. In addition, any information about our roadmap outlines our general product direction and is subject to change at any time without notice. It is for informational purposes only and shall not, be incorporated into any contract or other commitment. Splunk undertakes no obligation either to develop the features or functionality described or to include any such feature or functionality in a future release.
Agenda

- Setting The Stage, Why Is This Important
- Collection/Forwarding
- Indexing
- Search
- UI/Dashboards
- Summary
Setting The Stage
The Goal

“Let our advance worrying become advance thinking and planning.”

- Winston Churchill
General Architecture Considerations
A Quick Refresher
Architecture Considerations

- Remember: Indexers are search peers and handle the bulk of the search workload
 - More indexers = less data per indexer = higher concurrency = more searches per time unit
 - Indexer processing capacity needs to be > SH capacity, top-heavy deployments can overwhelm the search peers
- Address search performance issues at the search peer tier first, i.e. when in doubt, add an indexer
- Avoid complex architectures, keep it simple (intermediary forwarders, over-building for every failure scenario, etc.)
Collection/Forwarding
Collection/Forwarding Performance

• Forwarder configuration can affect...
 – **Event distribution** across indexers, which negatively affects search performance
 ‣ High-velocity log source can cause stickiness (see: `forceTimebasedAutoLB`)
 – **Event throughput**, which may affect index time latency, causing events to not be searchable for extended periods of time
 ‣ UF has Default MaxKBps of 256kbps
 ‣ Keep number of monitored sources low
 ‣ New in 6.4: `parallelIngestionPipelines` (server.conf)

• Use UF vs. HF for intermediary FWD tier if possible

• Consider HTTP Event Collector for forwarder-less collection
Indexing
Indexer Resources

• Storage performance is single most critical factor
 – Splunk doesn’t care which supported storage technology you use as long as it meets minimum IO performance requirements
 – Locally attached storage almost always wins over shared SAN

• Indexing itself is streaming write IO, but indexers do double duty!
 → Random Seek performance is critical for searching

• Slow storage for COLDDB can slow down indexing

• Indexers need resources (cores, memory, IO); constrained resources are the #1 cause for performance issues
Recommended Approach

- Separate HOT/WARM from COLD and limit HOT/WARM to the minimum required to fulfil ~80% of your search use cases.

This allows you to economically use SSDs for HOT/WARM and cheaper storage for the remaining search use cases (assuming search performance is less critical there).
Indexer Configuration

- Keep number of indices reasonable, create new index to address retention and access control requirements
- Separate high-velocity log sources from low-velocity sources
- Take advantage of parallel indexing pipelines if you can
- Combine things frequently searched together in the same index

- Turn that Hyperthreading ON, it does not hurt!
- Turn CPU power-safe OFF!
- If you are on RedHat Linux, turn THP off!
“Although the default Splunk configurations are typically appropriate, certain high-performance environments can benefit from tuning various parameters.”

- John F. Kennedy
Data Source Configuration

- For each sourcetype, always set:
 - `TIME_FORMAT` (TF)
 - `TIME_PREFIX` (TP)
 - `MAX_TIMESTAMP_LOOKAHEAD` (MLA)
 - `LINE_BREAKER`
 - `TRUNCATE`
 - `SHOULD_LINEMERGE=false`
 - `ANNOTATE_PUNCT=false` (AP)
Searching – Part 1

• Search time field extractions
 – Use DELIMS based field extractions when you can (KV, comma, pipe)
 – Anchor RegExs, Avoid RegEx lookbehind if you can

• Be as specific as you can when writing searches
 – Pick the smallest search timerange that meets your needs (Default!=All time)
 – Use indexed fields (host/source/sourcetype)
 – Specify index explicitly, e.g. index=firewall

• Don’t use |table in the middle of a search, use |fields instead

• Avoid realtime searches (use indexed_realtime if you can’t)

• Avoid verbose mode, unless you are exploring
Searching – Part 2

• When reporting on indexed fields, consider using `| tstats` to search index files only

• Exploit acceleration options where it makes sense
 – Report acceleration
 – Data model acceleration

• Got extra indexer cores? Use parallel search pipelines (see D)

• Stay current on Splunk releases, we continuously focusing on performance improvements
Example: Search Vs. tstats

index=_internal | stats count by sourcetype: 1.37MM events, 53.66secs
| tstats count where index=_internal by sourcetype: 1.88MM events, 0.056secs
Example: Verbose Vs. Smart/Fast Mode
Example: Table Vs. Fields

Time taken: 6.8 secs
Data read from indexers: 125MB
Example: Table Vs. Fields

Time taken: 2.76 secs
Data transferred from indexers: 214KB

<table>
<thead>
<tr>
<th>Component</th>
<th>Time</th>
<th>Data Transferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>dispatch.stream.remote</td>
<td>2.70</td>
<td>214,730</td>
</tr>
<tr>
<td>dispatch.stream.remote.undiag-idx01</td>
<td>1.05</td>
<td>71,193</td>
</tr>
<tr>
<td>dispatch.stream.remote.undiag-idx03</td>
<td>0.64</td>
<td>46,581</td>
</tr>
<tr>
<td>dispatch.stream.remote.undiag-idx04</td>
<td>0.59</td>
<td>50,183</td>
</tr>
<tr>
<td>dispatch.stream.remote.undiag-idx02</td>
<td>0.42</td>
<td>30,801</td>
</tr>
</tbody>
</table>
UI/Dashboading
UI/Dashboarding

- Use saved/scheduled searches in dashboards (reuse search results across users)
- Use summary indices for long-term, aggregated metrics (don’t recalculate from raw)
- Restrict time-range picker options to minimum req’d for use case
- Use base searches and PostProcess for panels that are based on the same raw event search
- Minimize the number of panels that require individual searches
- Avoid auto-refresh if you can (kiosk/NOC use-case only)
- Don’t use real-time searches or at least use indexed_realtime
Conclusions

- Architecture choices affect performance. KISS!
- Pick the fastest storage you can afford for HOT/WARM
- Configurations at all tiers can affect performance
- Inefficient use of SPL affects performance
- Concurrent searches is the critical metric for search capacity planning
- Always consider search impact on ‘indexers’
- Enjoy your well-performing Splunk deployment!
Where To Go From Here

- Docs on search performance:
 - Optimize Splunk for Peak performance:
 http://docs.splunk.com/Documentation/Splunk/6.1.4/Admin/OptimizeSplunkforpeakperformance
 - Splunk performance checklist:
 http://docs.splunk.com/Documentation/Splunk/6.4.2/Capacity/Performancechecklist
 - How search types affect performance:
 http://docs.splunk.com/Documentation/Splunk/6.4.2/Capacity/HowsearchtypesaffectSplunkEnterpriseperformance
Related Sessions Of Interest

- **Observations and Recommendations on Splunk Performance**
 Wednesday, September 28, 2016 | 12:05 PM-12:50 PM
- **Behind the Magnifying Glass: How Search Works**
 Wednesday, September 28, 2016 | 1:10 PM-1:55 PM
- **Fields, Indexed Tokens and You**
 Wednesday, September 28, 2016 | 11:00 AM-11:45 AM
- **Indexer Clustering Internals, Scaling, and Performance**
 Tuesday, September 27, 2016 | 3:15 PM-4:00 PM
- **Worst Practices... and How to Fix Them**
 Tuesday, September 27, 2016 | 10:30 AM-11:15 AM
- **Jiffy Lube Quick Tune-up for Your Splunk Environment**
 Wednesday, September 28, 2016 | 11:00 AM-11:45 AM
- **Architecting Splunk for Epic Performance at Blizzard Entertainment**
 Tuesday, September 27, 2016 | 12:40 PM-1:25 PM
- **Lesser Known Search Commands**
 Wednesday, September 28, 2016 | 3:30 PM-4:15 PM
THANK YOU