
A Trip Through The
Splunk Data Ingestion
And Retrieval Pipeline

Harold Murn | Senior Systems Engineer

2017-09-27 | Washington, DC

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

▶ Disclaimer
▶ The Search Funnel
▶ A Brief Overview Of Splunk Indexes
▶ The Easy Stuff
▶ What’s In A Bucket?
▶ Bloom Filters
▶ Segmenting
▶ Time-series Indexes
▶ Takeaways

Agenda

▶ I am not here on behalf of my employer
▶ The opinions and work are my own
▶ This largely applies only up to the first |
▶ I am not good with PowerPoint

Disclaimers

▶ I am not here on behalf of my employer
▶ The opinions and work are my own
▶ This largely applies only up to the first |
▶ I am not good with PowerPoint

▶ The code will be indicative / demonstrative
▶ The code will be slow
▶ The code will be bad, but readable
▶ There will be no math

Disclaimers

▶ I am not here on behalf of my employer
▶ The opinions and work are my own
▶ This largely applies only up to the first |
▶ I am not good with PowerPoint

▶ The code will be indicative / demonstrative
▶ The code will be slow
▶ The code will be bad, but readable
▶ There will be no math
▶ The code will be on github! https://github.com/tiedotguy/conf2017

Disclaimers

The Search Funnel

The Search Funnel

The Search Funnel

The Search Funnel

This is after the |

The Search Funnel
▶ This is bad

This is I/O, CPU,
network…

The Search Funnel
▶ This is good

Less I/O is better

A Brief Overview Of Splunk
Splunk 101

A Brief Overview Of Splunk
This is an indexer

Indexer

A Brief Overview Of Splunk
Indexers contain indexes

Indexer Index

A Brief Overview Of Splunk
Indexes contain buckets

BucketBucketBucket

Indexer Index Buckets

A Brief Overview Of Splunk
Buckets contain logs

BucketBucketBucket

Indexer Index Buckets Logs

A Brief Overview Of Splunk
… and a timestamp range

BucketBucketBucket

Indexer Index Buckets Logs
+time

▶ Did the search ask for an index to be searched?

The Easy Stuff

▶ Did the search ask for an index to be searched?
• Ignore the index!

The Easy Stuff

▶ Did the search ask for an index to be searched?
• Ignore the index!

▶ Does the search even have permission to search the index?

The Easy Stuff

▶ Did the search ask for an index to be searched?
• Ignore the index!

▶ Does the search even have permission to search the index?
• Ignore the index!

The Easy Stuff

▶ Did the search ask for an index to be searched?
• Ignore the index!

▶ Does the search even have permission to search the index?
• Ignore the index!

▶ Does this bucket time range overlap the search time range?

The Easy Stuff

▶ Did the search ask for an index to be searched?
• Ignore the index!

▶ Does the search even have permission to search the index?
• Ignore the index!

▶ Does this bucket time range overlap the search time range?
• Ignore the bucket!

The Easy Stuff

▶ Did the search ask for an index to be searched?
• Ignore the index!

▶ Does the search even have permission to search the index?
• Ignore the index!

▶ Does this bucket time range overlap the search time range?
• Ignore the bucket!

Being lazy is awesome! The more we can ignore, the less work we do.

The Easy Stuff

-rw------- 1 splunk splunk 10500393 Jul 31 06:01 1501478535-1496207100-0863.tsidx
-rw------- 1 splunk splunk 4804861 Jul 31 07:05 1501479625-1501478489-8260.tsidx

What’s In A Bucket?
Timeseries index files

-rw------- 1 splunk splunk 10500393 Jul 31 06:01 1501478535-1496207100-0863.tsidx
-rw------- 1 splunk splunk 4804861 Jul 31 07:05 1501479625-1501478489-8260.tsidx
-rw------- 1 splunk splunk 424909 Jul 31 07:06 bloomfilter

What’s In A Bucket?
The Bloom filter

-rw------- 1 splunk splunk 10500393 Jul 31 06:01 1501478535-1496207100-0863.tsidx
-rw------- 1 splunk splunk 4804861 Jul 31 07:05 1501479625-1501478489-8260.tsidx
-rw------- 1 splunk splunk 424909 Jul 31 07:06 bloomfilter
-rw------- 1 splunk splunk 75 Jul 31 07:06 bucket_info.csv
-rw------- 1 splunk splunk 15462 Jul 31 07:06 Hosts.data
-rw------- 1 splunk splunk 3713177 Jul 31 07:06 merged_lexicon.lex
-rw------- 1 splunk splunk 49 Jul 31 07:06 optimize.result

-rw------- 1 splunk splunk 6875 Jul 31 07:06 Sources.data
-rw------- 1 splunk splunk 7024 Jul 31 07:06 SourceTypes.data
-rw------- 1 splunk splunk 77 Jul 31 07:06 splunk-autogen-params.dat

What’s In A Bucket?
Metadata!

-rw------- 1 splunk splunk 10500393 Jul 31 06:01 1501478535-1496207100-0863.tsidx
-rw------- 1 splunk splunk 4804861 Jul 31 07:05 1501479625-1501478489-8260.tsidx
-rw------- 1 splunk splunk 424909 Jul 31 07:06 bloomfilter
-rw------- 1 splunk splunk 75 Jul 31 07:06 bucket_info.csv
-rw------- 1 splunk splunk 15462 Jul 31 07:06 Hosts.data
-rw------- 1 splunk splunk 3713177 Jul 31 07:06 merged_lexicon.lex
-rw------- 1 splunk splunk 49 Jul 31 07:06 optimize.result
drwx------ 2 splunk splunk 4096 Jul 31 07:06 rawdata
-rw------- 1 splunk splunk 6875 Jul 31 07:06 Sources.data
-rw------- 1 splunk splunk 7024 Jul 31 07:06 SourceTypes.data
-rw------- 1 splunk splunk 77 Jul 31 07:06 splunk-autogen-params.dat

What’s In A Bucket?
All your logs (they’re compressed)

Bloom Filters

Bloom Filters

▶ Probabilistic data structure
• They tell you if an item might be present, or if an item is not present

Bloom Filters

▶ Probabilistic data structure
• They tell you if an item might be present, or if an item is not present

▶ They make a space / accuracy trade off

Bloom Filters

0 0 0 0 0 0 0 0 0 0

Bloom Filters

cat

dog fish

0 0 0 0 1 1 0 0 0 1

Bloom Filters

cat

dog fish

0 0 0 0 1 1 0 0 0 1

bird

Bloom Filters

cat

dog fish

0 0 0 0 1 1 0 0 0 1

bird

emu

Bloom Filters

cat

dog fish

0 0 0 0 1 1 0 0 0 1

bird

emu

duck

Let’s write some code

Bloom Filters

They probably work.

Bloom Filters

▶ Major segmenting

Terms And Segmenting

▶ Major segmenting
• Split event by a set of “major breaks”
• Configured in segmenters.conf

• [] < > () { } | ! ; , ' " * \n \r \s \t & ? + %21 %26
%2526 %3B %7C %20 %2B %3D -- %2520 %5D
%5B %3A %0A %2C %28 %29

Terms And Segmenting

▶ Major segmenting
• Split event by a set of “major breaks”
• Configured in segmenters.conf

• [] < > () { } | ! ; , ' " * \n \r \s \t & ? + %21 %26
%2526 %3B %7C %20 %2B %3D -- %2520 %5D
%5B %3A %0A %2C %28 %29

• We’re lazy!
• Single characters only!
• “ \s

Terms And Segmenting

▶ Major segmenting
• Split event by a set of “major breaks”
• Configured in segmenters.conf

• [] < > () { } | ! ; , ' " * \n \r \s \t & ? + %21 %26
%2526 %3B %7C %20 %2B %3D -- %2520 %5D
%5B %3A %0A %2C %28 %29

• We’re lazy!
• Single characters only!
• “ \s

src_ip = 1.2.3.4

Terms And Segmenting

▶ Major segmenting
• Split event by a set of “major breaks”
• Configured in segmenters.conf

• [] < > () { } | ! ; , ' " * \n \r \s \t & ? + %21 %26
%2526 %3B %7C %20 %2B %3D -- %2520 %5D
%5B %3A %0A %2C %28 %29

• We’re lazy!
• Single characters only!
• “ \s

src_ip = 1.2.3.4

Terms And Segmenting

▶ Minor segmenting

Terms And Segmenting

▶ Minor segmenting
• Split a major segment by a set of “minor

breaks”
• Configured in segmenters.conf

• / : = @ . - $ # % \ _

Terms And Segmenting

▶ Minor segmenting
• Split a major segment by a set of “minor

breaks”
• Configured in segmenters.conf

• / : = @ . - $ # % \ _

• Track multiple minor segments
• From the end of the last minor break to

the next minor break
• From the start of the major segment to

the minor break character

Terms And Segmenting

▶ Minor segmenting
• Split a major segment by a set of “minor

breaks”
• Configured in segmenters.conf

• / : = @ . - $ # % \ _

• Track multiple minor segments
• From the end of the last minor break to

the next minor break
• From the start of the major segment to

the minor break character

1.2.3.4

Terms And Segmenting

▶ Minor segmenting
• Split a major segment by a set of “minor

breaks”
• Configured in segmenters.conf

• / : = @ . - $ # % \ _

• Track multiple minor segments
• From the end of the last minor break to

the next minor break
• From the start of the major segment to

the minor break character

1.2.3.4

Terms And Segmenting

▶ Minor segmenting
• Split a major segment by a set of “minor

breaks”
• Configured in segmenters.conf

• / : = @ . - $ # % \ _

• Track multiple minor segments
• From the end of the last minor break to

the next minor break
• From the start of the major segment to

the minor break character

1.2.3.4

Terms And Segmenting

▶ Minor segmenting
• Split a major segment by a set of “minor

breaks”
• Configured in segmenters.conf

• / : = @ . - $ # % \ _

• Track multiple minor segments
• From the end of the last minor break to

the next minor break
• From the start of the major segment to

the minor break character

1.2.3.4

Terms And Segmenting

▶ Minor segmenting
• Split a major segment by a set of “minor

breaks”
• Configured in segmenters.conf

• / : = @ . - $ # % \ _

• Track multiple minor segments
• From the end of the last minor break to

the next minor break
• From the start of the major segment to

the minor break character

1.2.3.4

Terms And Segmenting

▶ Minor segmenting
• Split a major segment by a set of “minor

breaks”
• Configured in segmenters.conf

• / : = @ . - $ # % \ _

• Track multiple minor segments
• From the end of the last minor break to

the next minor break
• From the start of the major segment to

the minor break character

1.2.3.4

Terms And Segmenting

▶ Minor segmenting
• Split a major segment by a set of “minor

breaks”
• Configured in segmenters.conf

• / : = @ . - $ # % \ _

• Track multiple minor segments
• From the end of the last minor break to

the next minor break
• From the start of the major segment to

the minor break character

1.2.3.4

Terms And Segmenting

▶ Minor segmenting
• Split a major segment by a set of “minor

breaks”
• Configured in segmenters.conf

• / : = @ . - $ # % \ _

• Track multiple minor segments
• From the end of the last minor break to

the next minor break
• From the start of the major segment to

the minor break character

1.2.3.4

Terms And Segmenting

The Timeseries Index

▶ Every event is given an ID unique within its bucket
▶ The event is segmented in to terms
▶ Each term is tracked in the TSIDX
▶ Each term is associated with a list of events

The Timeseries Index

▶ Every event is given an ID unique within its bucket
▶ The event is segmented in to terms
▶ Each term is tracked in the TSIDX
▶ Each term is associated with a list of events

deployed
east
in
service

1. service deployed in east(1)
(1)
(1)
(1)

The Timeseries Index

▶ Every event is given an ID unique within its bucket
▶ The event is segmented in to terms
▶ Each term is tracked in the TSIDX
▶ Each term is associated with a list of events

deployed
east
in
service
west

1. service deployed in east
2. service deployed in west

(1, 2)
(1)
(1, 2)
(1, 2)
(2)

The Timeseries Index

▶ Every event is given an ID unique within its bucket
▶ The event is segmented in to terms
▶ Each term is tracked in the TSIDX
▶ Each term is associated with a list of events

deployed
east
in
service
west
undeployed

1. service deployed in east
2. service deployed in west
3. service undeployed in east

(1, 2)
(1, 3)
(1, 2, 3)
(1, 2, 3)
(2)
(3)

The Timeseries Index

▶ The list of terms is stored in lexographical order
▶ This list is compressed in blocks of N terms
▶ The blocks can be searched using a basic binary search to find if a term is

potentially in a block
▶ If a term is potentially in the block, the block can be scanned linearly to confirm

The Timeseries Index
Stuff not implemented

▶ It is possible to efficiently search with wildcards if they don’t start with a *:
▶ It is possible to inefficiently search for wildcards that do start with a *

• Decompressing and scanning all terms is still faster than decompressing and scanning all logs

▶ Wildcards bypass the Bloom filter
▶ There is probably some more secret sauce in this area since I did my research

The Timeseries Index
A note on wildcards

▶ When searching, the more you can put before the |, the better
▶ Generic terms like “error” or “warning” are not great (on their own)
▶ Multiple generic terms (“an error has occurred”) are relatively better
▶ Specific terms are good, but may not be available
▶ Wildcards work better if combined with terms, because they bypass the

bloom filter
▶ “Add to search” can sometimes create an inefficient search (“| spath | search”)

Takeaways
For log consumers

▶ Emit specific and unique terms for specific things
• Error=13, Warning=21 are bad (error, warning, 13, and 21 are very generic)
• Error13, Warning21 are better
• ErrorUserNotFound, InfoPurchaseStatus are good (human parseable)

▶ Lots of common terms are bad
• “system status is up”, “cart step completed”
• The set of filtered events takes longer to calculate, and it may still be much larger than it should

▶ Better
• “SystemStatusUp”, “CartStepCompleted”
• These are very specific terms. They won’t occur randomly.

Takeaways
For log producers

▶ Be selective with minor breaks. They can substitute for wildcards but more terms
also has a cost. Sample terms: Cart_Created, Cart_NextStep, Cart_Lost
• “Cart” will match all 3 using the bloom filter and index
• “Cart*” will search for “Cart*” using the index (no bloom filter)
• “Cart_*” will search for “Cart” using the bloom filter and index, read+decompress logs, then look

for “Cart_”
• “Cart_Created” will search for “Cart AND Created”, read+decompress logs, then search those

for “Cart_Created”
• “TERM(Cart_Created)” will search for “Cart_Created” using the bloom filter and index

Takeaways
For both

▶ Lispy is the language that drives the filter which decides what to pull from disk
▶ Access it via “Inspect Job”, selecting “search.log”, and then searching the

information dump for “lispy”

Takeaways
Look at your lispy

▶ 08-14-2017 10:55:37.069 INFO UnifiedSearch - Expanded index search = cart_*

▶ 08-14-2017 10:55:37.069 INFO UnifiedSearch - base lispy: [AND cart]

…

▶ 08-14-2017 10:59:56.899 INFO UnifiedSearch - Expanded index search = cart*

▶ 08-14-2017 10:59:56.899 INFO UnifiedSearch - base lispy: [AND cart*]

…

▶ 08-14-2017 11:00:32.346 INFO UnifiedSearch - Expanded index search = cart_created

▶ 08-14-2017 11:00:32.346 INFO UnifiedSearch - base lispy: [AND created cart]

…

▶ 08-14-2017 11:01:58.559 INFO UnifiedSearch - Expanded index search = TERM(cart_created)

▶ 08-14-2017 11:01:58.559 INFO UnifiedSearch - base lispy: [AND cart_created]

Takeaways
Lispy examples

A Final Warning

▶ If you go too far, you may find:
• Trading “human” data for “machine” data may reduce your license consumption

A Final Warning

▶ If you go too far, you may find:
• Trading “human” data for “machine” data may reduce your license consumption
• Less I/O may reduce your hardware requirements

A Final Warning

▶ If you go too far, you may find:
• Trading “human” data for “machine” data may reduce your license consumption
• Less I/O may reduce your hardware requirements
• Faster searches may mean less sword fighting, more analyzing logs

A Final Warning

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

