
Advanced ML Using The
Extensible ML-SPL API

September 2017 | Washington, DC

Alexander Johnson | Software Engineer
Zidong Yang | Software Engineer

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

Xander Johnson Zidong Yang
▶ Splunker for 3 years
▶ Was Technical Training Instructor
▶ Software Engineer on ML Team
▶ BA in Linguistics @ USCB
▶ Cycling fanatic

▶ Splunker for 2 years
▶ Software Engineer on ML Team
▶ PhD in Computational Nanoscience

@ George Washington University

Who Are We ?

▶ Overview of ML-SPL
• What & Why
• Commands & Algorithms

▶ ML-SPL Extensibility API
• Motivation
• Background
• Examples

• Hello World
• Adaptive Boosting Classifiers!

Outline

ML-SPL Overview
Fit apply you some coefficients for great good!

Machine Learning Is Not Magic

… it’s a process.
Collect
Data

Explore/
Visualize

Model

Evaluate

Clean/
Transform

Publish/
Deploy

“Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says”, Forbes Mar 23, 2016

Splunk For Data Preparation

Collect
Data

Explore/
Visualize

Model

Evaluate

Clean/
Transform

Publish/
Deploy

props.conf,
transforms.conf,
Datamodels
Add-ons from Splunkbase, etc.

Pivot, Table UI, SPL
ML Toolkit

Alerts,
Dashboards,

Reports

ML-SPL: What Is It?

▶︎ A suite of SPL search commands specifically for Machine Learning:
• Fit
• Apply
• Summary
• Listmodels
• Deletemodel
• Sample

▶︎ Implemented using modules from the
Python for Scientific Computing Add-on for Splunk:
• scikit-learn, numpy, pandas, statsmodels, scipy

ML-SPL Commands: A “Grammar” For ML

Fit (i.e. train) a model from search results
… | fit <ALGORITHM> <TARGET> from <VARIABLES …>

<PARAMETERS> into <MODEL>

Apply a model to obtain predictions from (new) search results
… | apply <MODEL>

Inspect the model inferred by <ALGORITHM> (e.g. display coefficients)
| summary <MODEL>

ML-SPL Commands: fit

… | fit <ALGORITHM> <TARGET> from <VARIABLES …>
<PARAMETERS> into <MODEL>

Examples:

… | fit LinearRegression
system_temp from cpu_load fan_rpm
into temp_model

… | fit KMeans k=10
downloads purchases posts days_active visits_per_day
into user_behavior_clusters

… | fit LinearRegression
petal_length from species

optional

Toy Example
Titanic Survival Prediction

Toy Example
Titanic Survival Prediction

Toy Example
Titanic Survival Prediction

Toy Example
Titanic Survival Prediction

Toy Example
Titanic Survival Prediction

▶ Finally we have a machine learning model!
▶ How do we…

• Collect and utilize raw incoming data
• Save, distribute, and control access to the model
• Schedule re-fitting of model
• Publish reports of predictions
• Alert on predictions

Operationalize?
Still must deploy the model!

Toy Example
Titanic Survival Prediction

▶ Anticipates your pain points
• Categorical encoding
• Missing data
• Sampling
• Saving

▶ Chooses the best option
▶ Integrates with data in Splunk

• Cleaning data
• Creating features

Beyond Simply Fitting Models

▶ We can use Splunk Enterprise to…
• Collect and utilize raw incoming data (forwarders, inputs.conf)
• Save, distribute, and control access to the model (knowledge objects, search bundle)
• Schedule re-fitting of model (scheduled searches)
• Handle unknown fields (wildcards)
• Publish reports of predictions (dashboards)
• Alert on predictions (alert actions)

Operationalize!
Using Splunk!

▶ 30 Packaged algorithms come with the MLTK
• Regressors – predicting numeric output
• Classifiers – predicting categorical output
• Clusterers – grouping like with like
• Preprocessing
• Time series analysis – e.g. ARIMA, ACF, PACF
• Feature extraction – e.g. PCA, TFIDF

Algorithms
Different tools for different tasks

▶ Required dependency of the MLTK
▶ Provides needed libraries for ML
▶ Miniconda-based
▶ Most notable packages:

• scikit-learn
• pandas
• NumPy
• SciPy
• StatsModels

Python For Scientific Computing (PSC)
Free add-on available on Splunkbase

▶ What happens when the packaged algorithms aren’t the right ones?
• Fulfilling customer requests
• Operationalizing existing analyses or models
• Novel or proprietary algorithms
• Changing default behavior

• Handling missing values
• Arbitrary transformations

Why Custom Algorithms?

ML-SPL Extensibility API
Mixins, Methods, and Machine Learning

▶ The ML-SPL Extensibility API allows one to add custom algorithms that
can be used with the MLTK’s search commands.

▶ ML-SPL API: Similar to…
• Python SDK for custom commands API
• Custom Visualization API (a.k.a. “modviz”)
• scitkit-learn estimator API

▶ Can be used in separate standalone apps too!
• Still must have MLTK & PSC installed

Extensibility API

Directory Structure: MLTK
$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit

!"" bin
$"" algos
| !"" LogisticRegression.py
| !"" ...
| $"" LinearRegression.py
$"" default

$"" algos.conf

Directory Structure: MLTK
$SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit

!"" bin
$"" algos
| !"" LogisticRegression.py
| !"" HelloWorld.py ß algorithm source
| $"" LinearRegression.py
!"" local
| $"" algos.conf ß register in algos.conf
$"" default

$"" algos.conf

Directory Structure: Custom App
$SPLUNK_HOME/etc/apps/CustomApp

!"" bin
$"" algos
| $"" HelloWorld.py ß algorithm source
$"" default

$"" algos.conf ß register in algos.conf

▶ Used to add additional algorithms
▶ Simplest .conf you’ve ever seen

• Each algorithm is only a stanza header

▶ Allows you to package custom algorithms
in custom apps, just like
• Custom commands
• Custom visualizations
• Custom alert actions

algos.conf
Algorithm Registration

algos.conf

[HelloWorld]
[MyCustomAlgo]

Class Skeleton
CustomApp/bin/algos/CustomAlgo.py

from base import BaseAlgo

class CustomAlgo(BaseAlgo):
def __init__(self, options):

Option checking & initializations here
pass

def fit(self, df, options):
Fit an estimator to df, a pandas DataFrame of the search results
pass

def apply(self, df, options):
Apply a saved model
return df

@staticmethod
def register_codecs():

Add codecs to the codec manager
pass

Fit Hello World
Basic DataFrame manipulation – using search results

from base import BaseAlgo

class HelloWorld(BaseAlgo):
def __init__(self, options):

pass

def fit(self, df, options):
df['message'] = "Hello World!"
return df

Fit AdaBoostClassifier
Fitting an ensemble classifier

from sklearn.ensemble import AdaBoostClassifier as _AdaBoostClassifier

from base import ClassifierMixin, BaseAlgo
from codec import codecs_manager
from util.param_util import convert_params

class AdaBoostClassifier(ClassifierMixin, BaseAlgo):
def __init__(self, options):

self.handle_options(options)

params = options.get('params', {})
converted_params = convert_params(params, ints=['n_estimators'],

floats=['learning_rate'])

self.estimator = _AdaBoostClassifier(**converted_params)

Fit AdaBoostClassifier
Fitting an ensemble classifier

@staticmethod
def register_codecs():

from codec.codecs import SimpleObjectCodec, TreeCodec
codecs_manager.add_codec('algos.AdaBoostClassifier',

'AdaBoostClassifier', SimpleObjectCodec)
codecs_manager.add_codec('sklearn.ensemble.weight_boosting',

'AdaBoostClassifier', SimpleObjectCodec)
codecs_manager.add_codec('sklearn.tree.tree',

'DecisionTreeClassifier', SimpleObjectCodec)
codecs_manager.add_codec('sklearn.tree._tree',

'Tree', TreeCodec)

▶ MLTK Provides Mixin classes for common ML problems:
• RegressorMixin – continuous target
• ClassifierMixin – categorical target
• TransformerMixin – arbitrary transformation (no target)
• ClustererMixin – unknown target (unsupervised learning)

▶ Utility methods
• df_util.prepare_features
• df_util.create_output_dataframe

▶ Minimizes boilerplate

Using Built-In Utilities
Mixins are helper classes in Splunk_ML_Toolkit/bin/base.py

fit: How It Works

1. Discard fields that are null for all search results
2. Discard non-numeric fields with >100 distinct values
3. Discard search results with any null fields
4. Convert non-numeric fields to binary indicator variables

(i.e. “dummy coding”)

5. Convert to a numeric matrix and hand over to <ALGORITHM>
6. Compute predictions for all search results
7. Save the learned model

fit: How It Works

1. Discard fields that are null for all search results.

field_A field_B field_C field_D field_E
ok 41 red 172.24.16.5

ok 32 green 192.168.0.2

FRAUD 1 blue 10.6.6.6
ok 43 171.64.72.1

2 blue 192.168.0.2

Target Explanatory Variables…

… | fit LogisticRegression field_A from field_*

fit: How It Works

2. Discard non-numeric fields with >100 distinct values.

field_A field_B field_D field_E
ok 41 red 172.24.16.5

ok 32 green 192.168.0.2

FRAUD 1 blue 10.6.6.6
ok 43 171.64.72.1

2 blue 192.168.0.2

Target Explanatory Variables…

… | fit LogisticRegression field_A from field_*

fit: How It Works

3. Discard search results with any null fields.

field_A field_B field_D
ok 41 red
ok 32 green
FRAUD 1 blue
ok 43

2 blue

Target Explanatory Variables…

… | fit LogisticRegression field_A from field_*

fit: How It Works

field_A field_B field_D
ok 41 red
ok 32 green
FRAUD 1 blue

Target Explanatory Variables…

… | fit LogisticRegression field_A from field_*

4. Convert non-numeric fields to binary indicator variables.

field_A field_B field_D=r
ed

…=green …=blue

ok 41 1 0 0
ok 32 0 1 0
FRAUD 1 0 0 1

fit: How It Works

5. Convert to a numeric matrix and hand over to <ALGORITHM>.
y = X =

… | fit LogisticRegression field_A from field_*

[1, 1, 0] [[41, 1, 0, 0],
[32, 0, 1, 0],
[1, 0, 0, 1]]

𝑦" = 	
1

1 + 𝑒((*+,)
Find 𝜃 using maximum likelihood estimation.

e.g. for Logistic Regression:

Model inference generally delegated to scikit-learn and statsmodels.
(e.g. sklearn.linear_model.LogisticRegression)

fit: How It Works

43

6. Compute predictions for all search results.

field_A field_B field_C field_D field_E predicted(fiel
d_A)

ok 41 red 172.24.1
6.5

ok

ok 32 green 192.168.
0.2

ok

FRAUD 1 blue 10.6.6.6 FRAUD
ok 43 171.64.7

2.1
ok

2 blue 192.168.
0.2

FRAUD

Target Explanatory Variables…

… | fit LogisticRegression field_A from field_*

Prediction

fit: How It Works

7. Save the learned model.

Serialize model settings, coefficients, etc. into a Splunk lookup table.
▶︎ Replicated amongst members of Search Head Cluster
▶︎ Automatically distributed to Indexers with search bundle
▶︎ Safe! No pickles

… | fit LogisticRegression field_A from field_* into logreg_model

▶ We have ML-SPL API documentation
http://docs.splunk.com/Documentation/MLApp/latest/API/Introduction

▶ Examples include
• CorrelationMatrix – using parameters in your search
• AgglomerativeClustering – using df_util methods to clean data, convert categorical, etc.
• Support Vector Regressor – using Mixins
• Savitzky-Golay Filter – arbitrary statistical transformations with NumPy and SciPy

Writing Your Own!
Check the guide!

Q&A

▶ ML-SPL uses sampling to control size of input
▶ Also has a “watchdog” process configured

• Memory consumption
• Max time spent fitting

mlspl.conf
Resource Consumption Management

[default]
max_inputs = 100000
use_sampling = true
max_fit_time = 600
max_memory_usage_mb = 1000
handle_new_cat= default
max_model_size_mb = 15
streaming_apply = false

[SVM]
max_inputs = 10000

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

