
Dev/Sec/Ops
Building the Pipeline of Security driven
process with Agile Methodology

Domnick Eger | Global DevOps Practitioner

08/25/17 | Washington, DC

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

DevOps Pipeline
Gaining Visibility into the DevOps Tool Stack

DevOps Pipeline with a Security Focus
Plan, Code, Test, Store and Release

Project
Management

Source Code
Management

Build
Environment

Testing
QA

Artifact
Repo

Release
Environment

Automation
Framework

PLAN COMMIT BUILD TEST STORE RELEASE DEPLOY

© 2017 SPLUNK INC.

1. Actor Bypasses Code Control by Accessing
Repo published accidentally as a Public Repo.

2. Actor Forces a Rebase and Pushes Exploit into
code base. Audit trail is logged but no one
notices.

3. Actor then pushes the code through the build
environment and make the code available as
latest artifact.

4. Code is deployed via Automated Webhooks
and Is pushed to the primary repo for release
automation team to push into production.

5. Actor has a backdoor and waits for the code to
be deployed into the wild.

Internal Hacker within
the Ranks of the

Development Team.

Code, Commit,
Build, Exploit

© 2017 SPLUNK INC.

Act II
The Actor waits for the right time to strike.

© 2017 SPLUNK INC.

1. Splunk triggers an alert to notify team that a
repo is a public and not set to private. Splunk
App for Bitbucket Notifies the Development and
Security Team before Actor find the mistake.

2. Actor tries to bypass checks and get into Repo
but can not rebase repo, tries to Create a
branch build and waits for a pull request to be
Approved. Developers have to go through two
reviews before committing to master.

3. Actor tries to bypass code review method and
clones the repo and changes the build plan
which then trigger an alerts in Splunk and notify
the team. Splunk locks out the account.

4. Information is logged, Actor is caught and
everything in the environment is checked to
validate code compliance.

Taking the proper
approach to auditing
and alerting can help

you save you from
massive headaches.

Code, Alert,
Secure,

Respond

© 2017 SPLUNK INC.

Planning and Executing
Following the Plan and Executing and Document the Process.

Planning and Executing
Plan, Code, Audit and Respond

Project
Management

Source Code
Management

Build
Environment

Testing
QA

Artifact
Repo

Release
Environment

Automation
Framework

PLAN COMMIT BUILD TEST STORE RELEASE DEPLOY

© 2017 SPLUNK INC.

1. Actor attempts to bypass system checks and
access backend MySQL Database to cover
tracks.

2. Actor makes changes to the MySQL database,
turns all Repos into Public and attempt a code
exploit.

3. Actor attempts to bypass system by bypassing
HIDS and trigger alert. But no one is monitoring
the build environment that actively.

4. Actor pushes code, rebases the Repo, pushes
past the code quality testing, forced artifacts to
be created and pushes the final artifacts to be
deployed.

5. Release engineering team blindly pushes into
the environment and actor waits for the right
opportunity to exploit code.

Hacking when no one
is watching and
building into the

environment.

Plan, Code,
Test, Release,

Backdoor

© 2017 SPLUNK INC.

© 2017 SPLUNK INC.

1. Actor attempts to bypass system checks and
access backend MySQL Database to cover
tracks. Splunk Stream detects a MySQL
statement and logs the change.

2. Actor makes changes to the MySQL database,
turns all Repos into Public and attempt a code
exploit. Splunk get notified on the clone and
push and keep it own record of the change.

3. Actor attempts to bypass system by bypassing
HIDS and trigger login alert. Splunk notify the
Security team that the HIDS logs into Splunk.

4. Actor pushes code, tries to bypass the pull
request and tries to merge into master. Splunk
detects no Jira Ticket is tagged. Locks out the
account.

5. Security + Development team investigate the
situation and triage the situation.

Another attempt foiled
by the logging all

events happening in
the environment and
alerting the changes.

Code, Alert,
Secure,

Respond

© 2017 SPLUNK INC.

Build Pipeline
Capturing Security relevant information within the Build Pipeline

Build Pipeline
Plan, Code, Test, Store and Release

Project
Management

Source Code
Management

Build
Environment

Testing
QA

Artifact
Repo

Release
Environment

Automation
Framework

PLAN COMMIT BUILD TEST STORE RELEASE DEPLOY

© 2017 SPLUNK INC.

1. Actor bypasses the Repo requirements, passes
code reviews and allow the build environment
to pull, build, and release Artifacts.

2. Release Engineering team will then blindly
push out the binary and stage it for the
environment.

3. Actor patiently waits for the moment to strike
and code gets embedded into other builds and
soon spreads like a a virus.

4. Actor strikes and take over the system by
crypto locking all the files, databases, and post
a hostage message for the internal employees.

5. Company has to take down the system and
deal with a PR mess.

Actor don’t typically
have to bypass a build

plan but sometimes
these systems are wide

open and don’t get
logged.

Build, Log, Alert

© 2017 SPLUNK INC.

© 2017 SPLUNK INC.

1. Actor attempts to bypass the security checks
and development process but the system is
able to log and react to the situation.

2. Actor is locked out of the system.

3. Team investigates and nothing is leaked
outside the company environment.

4. Actor Fails in the Final Act.Actor don’t typically
have to bypass a build

plan but sometimes
these systems are wide

open and don’t get
logged.

Build, Log, Alert

CHECK MATE !

© 2017 SPLUNK INC.

Release Pipeline
Releasing into the Secure Environment

Release Pipeline
Store, Release, Deploy with Secure Velocity

Project
Management

Source Code
Management

Build
Environment

Testing
QA

Artifact
Repo

Release
Environment

Automation
Framework

PLAN COMMIT BUILD TEST STORE RELEASE DEPLOY

© 2017 SPLUNK INC.

1. Actor bypass checks in the code review and
forces a massive change within the application
framework.

2. The build environment creates the artifact with
the exploit code and increases the size of the
package by 20%.

3. Release Engineering does not notice the
abnormal increase of changes and pushes into
the environment.

4. Customer has a breach situation and customer
data is leaked. PR Mess Begins.

A actor will take all
possible open doors to

exploit your lack of
logging. Don’t be that

guy.

Release with
Confidence

© 2017 SPLUNK INC.

© 2017 SPLUNK INC.

1. Actor bypasses the code review process.
Pushes changes into the master code branch
and forces the change through the build system
that creates an artifact.

2. Release Engineering group report notices that
package grew by 20% and stops the release of
the application. Splunk locks out the account
from doing anymore builds or code changes.

3. Developers checks to see what happens,
notices the code changes, reverts back the
changes and put the code in future release
process.

4. Developers do a root case analysis and find the
break in the code review process and make the
proper adjustments.

A actor will take all
possible open doors to

exploit your lack of
logging. Don’t be that

guy.

Release with
Confidence

© 2017 SPLUNK INC.

Repeat and Learn
Repeating the Process and Learning from your Data

© 2017 SPLUNK INC.

You can only learn from
your own mistakes but
sometimes it takes a
little information to go

the right direction.

Fail…
Succeed…

Fail… Learn

Plan and Respond to Changes

DevOps Pipeline with Repeat and Learn
By learning from your mistakes you can Automate your safe guards.

Project
Management

Source Code
Management

Build
Environment

Testing
QA

Artifact
Repo

Release
Environment

Automation
Framework

PLAN COMMIT BUILD TEST STORE RELEASE DEPLOY

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

