
Fields, Indexed Tokens,
And You
Martin Müller | Professional Services Consultant, Consist Software Solutions GmbH

September 42nd, 2017 | Washington, DC

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

▶ Supercharged searches!
▶ I want you to turn this…

…into this!

…this is bad:

Why Are We Here?

▶ Professional Services Consultant II, Certified Architect II, Splunk Trustee x3
▶ Seven years at EMEA Splunk Partner
▶ Heavy Splunker since 2012

▶ Get in touch with me: martin.mueller@consist.de
▶ Give karma at Splunk Answers:
▶ Join us on Slack: splunk-usergroups.signup.team

Who’s That Guy?

4

▶ Understand how Splunk turns a logfile into indexed tokens
▶ Learn how your searches make good use of indexed tokens (or not)

▶ Topics in detail:
• Breakers & Segmentation
• Lispy
• Fields

Session Objectives

Breakers &
Segmentation

How Does Splunk Break Events
Into Indexed Tokens?

▶ Read in a line of data, apply segmentation, store tokens in TSIDX files
▶ Minor breakers: / : = @ . - $ # % \ _
▶ Major breakers: \r\n\s\t [] <> () {} | ! ; ‚ ‘ " etc.
▶ Can be configured in segmenters.conf – but very rarely should!

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

How Splunk Chops Up An Event

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

bin>splunk cmd walklex ..\var\lib\splunk\conf2016_segmentation\db\hot_v1_1\1466784663-
1466784663-15369347184008592423.tsidx ""
my needle:
3 1 -
4 1 0
5 1 0200
6 1 03
7 1 1
8 1 11
9 1 127

Inspect a TSIDX file

10 1 127.0.0.1
11 1 18
12 1 2016
13 1 24
14 1 24/jun/2016:18:11:03.404
15 1 404
27 1 jun
29 1 mm

Each token is a pointer
to the raw event

▶ Look for high-cardinality groups of tokens you don‘t search for
▶ Common offender: Textual timestamp representations:
24/jun/2016:18:11:03.404

▶ You don‘t filter for „events from June“ by searching for jun
▶ Segmenters.conf lets you filter out unwanted parts of your events
▶ Beware: Easy to break stuff, hard to define filters in some cases
▶ More info available at http://www.duanewaddle.com/splunk-bucket-lexicons-and-

segmentation/

Room For Optimization

Lispy
How Does Splunk Find Events

Matching Your Search?

▶ Lispy expressions are predicates Splunk uses to locate events
▶ Awesome for debugging and performance tuning

▶ Square brackets, prefix notation for operators? That‘s lispy.
▶ Search for splunk.conf 2018 – Orlando, FL and you get
[AND 2018 conf fl orlando splunk]

▶ All events matching the predicate are scanned

Lispy??

▶ Since 6.2, lispy is by default only visible in search.log
▶ Enable the old-fashioned header in limits.conf:
[search_info] infocsv_log_level=DEBUG

▶ Check lispy efficiency by comparing eventCount/scanCount

Job Inspector

index=_audit search_id TERM(action=search)
(info=granted OR info=completed)

| transaction search_id
startswith=(info=granted) endswith=(info=completed)

| eval lispy_efficiency = event_count / scan_count
| where scan_count > 100 AND total_run_time > 5

AND lispy_efficiency < 0.5
| table _time total_run_time event_count scan_count

lispy_efficiency user savedsearch_name search

▶ Adjust thresholds as needed
▶ Finds some false positives, e.g. itself J
▶ Stats? Sure:

How To Find Naughty Searches?

index=_audit search_id TERM(action=search) (info=granted OR info=completed)
| stats first(_time) as _time first(total_run_time) as total_run_time first(event_count) as event_count first(scan_count) as

scan_count first(user) as user first(savedsearch_name) as savedsearch_name first(search) as search by search_id
| eval lispy_efficiency = event_count / scan_count
| where lispy_efficiency < 0.5 AND total_run_time > 5 AND scan_count > 100

Find start and end events for searches

Group by search ID

Do maths,
apply filters,
and
select fields

▶ Every breaker is a major breaker
▶ Remove duplicates, sort alphabetically
▶ Some additional optimizations
▶ 127.0.0.1 becomes [AND 0 1 127]
▶ Load all events off disk that contain all three tokens – scanCount

▶ Filter for 127.0.0.1 in the raw event – eventCount

Building The Lispy For A Search

Search Lispy

foo bar (implicit AND) [AND bar foo]

foo OR bar [OR bar foo]

(a AND b) OR (c AND d) [OR [AND a b] [AND c d]]

(a OR b) AND (c OR d) [AND [OR a b] [OR c d]]

AND And OR Behave

▶ NOT bad works as expected: [NOT bad]

▶ Load all events that don‘t have that token

▶ How do you translate NOT 127.0.0.1?
▶ [NOT [AND 0 1 127]]?
▶ That would rule out 127.0.1.1!
▶ The sad reality: [AND]
▶ Same story with NOT "foo bar"

NOT Can Be Tricky

127.0.0.1 is a good IP
127.0.1.1 is a bad IP
127.1.0.0 is a bad IP

▶ Filter for partial matches of indexed tokens
▶ Imagine indexed tokens are stored as a tree,

where each node contains a list of events
▶ Beware of wildcards at the beginning!

Wildcards

Search Lispy
foo* [AND foo*]

f*o [AND f*o]

*foo [AND]

▶ Wildcards in combination with breakers lead to unexpected results

▶ Hello W*rld gives you [AND hello w*rld] – great!
▶ Hello*World gives you [AND hello*world] – oops!
▶ There is no indexed token matching this lispy!

Wildcards Can Be Tricky

▶ Wildcards in combination with breakers lead to unexpected results

▶ Say your events contain java.lang.NullPointerException
▶ Indexed tokens: java lang NullPointerException

java.lang.NullPointerException

▶ java*Exception / [AND java*Exception] – great!
▶ java.lang.*Exception / [AND java lang] – fine!
▶ java.lang*Exception / [AND java lang*Exception] – oops!

▶ In short: Be very very careful around wildcards

Wildcards Can Be Really Tricky

▶ Force lispy to use a complex token, ignore breakers
▶ TERM(127.0.0.1) becomes [AND 127.0.0.1]
▶ Allows leading wildcards, TERM(*foo) becomes [AND *foo]
▶ Enables inexact tstats queries \o/
| tstats count where index=_* TERM(*ucketMover)

▶ Can be used with fields: component=TERM(*ucketMover)

▶ Beware: Crawling the index for leading wildcards is IO-intensive
▶ Related: CASE(FoO) produces case-sensitive lispy expressions

TERM()

Fields
Unprecedented

▶ Field values are extracted from the raw event while the search runs
▶ Default assumption: Field values are whole indexed tokens
▶ exception=java.lang.NullPointerException becomes
[AND java lang NullPointerException]

▶ Actual field extractions and post-filtering happens after loading raw events
▶ Pro: Flexibility, scoping, mostly decent performance
▶ Con: Terrible performance in some cases, partial tokens pitfall

Search-time Fields

▶ Default fields: host, source, timestartpos, etc.
▶ Custom fields in transforms.conf (WRITE_META=true)
▶ Pro: Search performance
▶ Con: Flexibility, lack of sourcetype namespace
▶ Con if over-used: Indexing overhead, disk space

▶ Search for sourcetype=foo timestartpos>0
[AND sourcetype::foo [GT timestartpos 0]]

Index-time Fields

▶ transforms.conf: REGEX, FORMAT, WRITE_META
▶ props.conf: TRANSFORMS-class = stanza
▶ fields.conf: [fieldname] INDEXED = true

▶ …fields.conf?
▶ Tells the search that a field is expected as an indexed field (lispy ::)
▶ Not scoped to a props.conf stanza such as sourcetype!
▶ Trying to work around fields.conf with field aliases is futile
▶ Use field::value in search to explicitly access indexed field

Define Custom Index-time Fields

(almost)

▶ Call an eval expression at search time: [stanza] EVAL-answer=42
▶ Field values don’t have to be indexed tokens, hard to filter in lispy
▶ answer=42 becomes [OR 42 sourcetype::stanza]
▶ Scan all events for the field value plus all events for that stanza
▶ Common use case: CIM normalization, e.g. Bluecoat TA:
EVAL-dest=coalesce(dest_ip, dest_host)

▶ No pre-search optimization
▶ Use sparingly when searching by a field

Calculated Fields

▶ Access logs, search for server errors: status>=500
▶ What indexed token to scan for? None - [AND]

▶ Can be solved with a lookup of known server error codes (CIM App)
▶ Can be solved with an indexed field

▶ Non-solution: status=5*, [AND 5*]
▶ Too many events have a 5* token somewhere

Comparisons

▶ NOT bad worked well: [NOT bad]
▶ What about NOT field=bad?
▶ Index-time? No problem: [NOT field::bad]
▶ Search time? [NOT bad]?

▶ That would rule out events like this:
field=good otherfield=bad!

▶ Instead, Splunk has to scan all the events

Remember NOT? Tricky…

▶ 2016-09-28 12:34:56.789 uid=2016 syscall=2

▶ Search for uid=2016, get [AND 2016]
▶ Token is not very unique, scans all events from that year
▶ Common offenders: Small integers, true, yes, ERROR, etc.

▶ Can be solved with an indexed field
▶ Can sometimes be solved with TERM(uid=2016)
▶ Beware of uid="2016" – major breakers break TERM()

Value Uniqueness

▶ Any financial services people? – DE44500105175407324931

▶ Extract fields:(?<country>[A-Z][A-Z])(?<check>\d\d)…
▶ Search for country=DE, get lispy [AND DE] – oops!
▶ Can be fixed by fields.conf (but beware of scoping!)
[country] INDEXED_VALUE = <VALUE>*

▶ Search for check=44 – fixing in fields.conf gets ugly
[check] INDEXED_VALUE = *<VALUE>*
[check] INDEXED_VALUE = false

Fields From Partial Tokens

▶ Accelerated Datamodels and Reports get filled by frequent searches
▶ Users of accelerations get a large performance boost regardless of their lispy

efficiency – good!

▶ However!
▶ The frequent summarizing searches should be well-optimized
▶ Rule of thumb: The more often something will run for a long time into the future,

the more time you should spend on optimizations

What About Accelerations?

© 2017 SPLUNK INC.

1. Love thy Job Inspector
2. Start to think of lispy when writing searches
3. Level 2: Think in lispy
4. Carefully consider opportunities for index-

time fields
5. Give extra scrutiny to…

• Searches using wildcards
• Small numbers
• Filtering through NOT – especially for fields
• Calculated fields
• These:

Job Inspector,
Job Inspector,
Job Inspector!

Key
Takeaways

31

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

