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Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.



▶ Supercharged searches!
▶ I want you to turn this…

…into this!

…this is bad:

Why Are We Here?



▶ Professional Services Consultant II, Certified Architect II, Splunk Trustee x3
▶ Seven years at EMEA Splunk Partner
▶ Heavy Splunker since 2012

▶ Get in touch with me: martin.mueller@consist.de
▶ Give karma at Splunk Answers:
▶ Join us on Slack: splunk-usergroups.signup.team

Who’s That Guy?
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▶ Understand how Splunk turns a logfile into indexed tokens
▶ Learn how your searches make good use of indexed tokens (or not)

▶ Topics in detail:
• Breakers & Segmentation
• Lispy
• Fields

Session Objectives



Breakers & 
Segmentation

How Does Splunk Break Events
Into Indexed Tokens?



▶ Read in a line of data, apply segmentation, store tokens in TSIDX files
▶ Minor breakers: / : = @ . - $ # % \ _
▶ Major breakers: \r\n\s\t [] <> () {} | ! ; ‚ ‘ " etc.
▶ Can be configured in segmenters.conf – but very rarely should!

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

How Splunk Chops Up An Event



127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

bin>splunk cmd walklex ..\var\lib\splunk\conf2016_segmentation\db\hot_v1_1\1466784663-
1466784663-15369347184008592423.tsidx ""
my needle:
3 1 -
4 1 0
5 1 0200
6 1 03
7 1 1
8 1 11
9 1 127

Inspect a TSIDX file

10 1 127.0.0.1
11 1 18
12 1 2016
13 1 24
14 1 24/jun/2016:18:11:03.404
15 1 404
27 1 jun
29 1 mm

Each token is a pointer
to the raw event



▶ Look for high-cardinality groups of tokens you don‘t search for
▶ Common offender: Textual timestamp representations: 
24/jun/2016:18:11:03.404

▶ You don‘t filter for „events from June“ by searching for jun
▶ Segmenters.conf lets you filter out unwanted parts of your events
▶ Beware: Easy to break stuff, hard to define filters in some cases
▶ More info available at http://www.duanewaddle.com/splunk-bucket-lexicons-and-

segmentation/

Room For Optimization



Lispy
How Does Splunk Find Events

Matching Your Search?



▶ Lispy expressions are predicates Splunk uses to locate events
▶ Awesome for debugging and performance tuning

▶ Square brackets, prefix notation for operators? That‘s lispy.
▶ Search for splunk.conf 2018 – Orlando, FL and you get
[ AND 2018 conf fl orlando splunk ]

▶ All events matching the predicate are scanned

Lispy??



▶ Since 6.2, lispy is by default only visible in search.log
▶ Enable the old-fashioned header in limits.conf:
[search_info] infocsv_log_level=DEBUG

▶ Check lispy efficiency by comparing eventCount/scanCount

Job Inspector



index=_audit search_id TERM(action=search) 
(info=granted OR info=completed)

| transaction search_id
startswith=(info=granted) endswith=(info=completed)

| eval lispy_efficiency = event_count / scan_count
| where scan_count > 100 AND total_run_time > 5

AND lispy_efficiency < 0.5
| table _time total_run_time event_count scan_count

lispy_efficiency user savedsearch_name search

▶ Adjust thresholds as needed
▶ Finds some false positives, e.g. itself J
▶ Stats? Sure:

How To Find Naughty Searches?

index=_audit search_id TERM(action=search) (info=granted OR info=completed)
| stats first(_time) as _time first(total_run_time) as total_run_time first(event_count) as event_count first(scan_count) as 

scan_count first(user) as user first(savedsearch_name) as savedsearch_name first(search) as search by search_id
| eval lispy_efficiency = event_count / scan_count
| where lispy_efficiency < 0.5 AND total_run_time > 5 AND scan_count > 100

Find start and end events for searches

Group by search ID

Do maths,
apply filters,
and
select fields



▶ Every breaker is a major breaker
▶ Remove duplicates, sort alphabetically
▶ Some additional optimizations
▶ 127.0.0.1 becomes [ AND 0 1 127 ]
▶ Load all events off disk that contain all three tokens – scanCount

▶ Filter for 127.0.0.1 in the raw event – eventCount

Building The Lispy For A Search



Search Lispy

foo bar (implicit AND) [ AND bar foo ]

foo OR bar [ OR bar foo ]

(a AND b) OR (c AND d) [ OR [ AND a b ] [ AND c d ] ]

(a OR b) AND (c OR d) [ AND [ OR a b ] [ OR c d ] ]

AND And OR Behave



▶ NOT bad works as expected: [ NOT bad ]

▶ Load all events that don‘t have that token

▶ How do you translate NOT 127.0.0.1?
▶ [ NOT [ AND 0 1 127 ] ]?
▶ That would rule out 127.0.1.1!
▶ The sad reality: [ AND ]
▶ Same story with NOT "foo bar"

NOT Can Be Tricky

127.0.0.1 is a good IP
127.0.1.1 is a bad IP
127.1.0.0 is a bad IP



▶ Filter for partial matches of indexed tokens
▶ Imagine indexed tokens are stored as a tree,

where each node contains a list of events
▶ Beware of wildcards at the beginning!

Wildcards

Search Lispy
foo* [ AND foo* ]

f*o [ AND f*o ]

*foo [ AND ]



▶ Wildcards in combination with breakers lead to unexpected results

▶ Hello W*rld gives you [ AND hello w*rld ] – great!
▶ Hello*World gives you [ AND hello*world ] – oops!
▶ There is no indexed token matching this lispy!

Wildcards Can Be Tricky



▶ Wildcards in combination with breakers lead to unexpected results

▶ Say your events contain java.lang.NullPointerException
▶ Indexed tokens: java lang NullPointerException

java.lang.NullPointerException

▶ java*Exception / [ AND java*Exception ] – great!
▶ java.lang.*Exception / [ AND java lang ] – fine!
▶ java.lang*Exception / [ AND java lang*Exception ] – oops!

▶ In short: Be very very careful around wildcards

Wildcards Can Be Really Tricky



▶ Force lispy to use a complex token, ignore breakers
▶ TERM(127.0.0.1) becomes [ AND 127.0.0.1 ]
▶ Allows leading wildcards, TERM(*foo) becomes [ AND *foo ]
▶ Enables inexact tstats queries \o/
| tstats count where index=_* TERM(*ucketMover)

▶ Can be used with fields: component=TERM(*ucketMover)

▶ Beware: Crawling the index for leading wildcards is IO-intensive
▶ Related: CASE(FoO) produces case-sensitive lispy expressions

TERM()



Fields
Unprecedented



▶ Field values are extracted from the raw event while the search runs
▶ Default assumption: Field values are whole indexed tokens
▶ exception=java.lang.NullPointerException becomes
[ AND java lang NullPointerException ]

▶ Actual field extractions and post-filtering happens after loading raw events
▶ Pro: Flexibility, scoping, mostly decent performance
▶ Con: Terrible performance in some cases, partial tokens pitfall

Search-time Fields



▶ Default fields: host, source, timestartpos, etc.
▶ Custom fields in transforms.conf (WRITE_META=true)
▶ Pro: Search performance
▶ Con: Flexibility, lack of sourcetype namespace
▶ Con if over-used: Indexing overhead, disk space

▶ Search for sourcetype=foo timestartpos>0
[ AND sourcetype::foo [ GT timestartpos 0 ] ]

Index-time Fields



▶ transforms.conf: REGEX, FORMAT, WRITE_META
▶ props.conf: TRANSFORMS-class = stanza
▶ fields.conf: [fieldname] INDEXED = true

▶ …fields.conf?
▶ Tells the search that a field is expected as an indexed field (lispy ::)
▶ Not scoped to a props.conf stanza such as sourcetype!
▶ Trying to work around fields.conf with field aliases is futile
▶ Use field::value in search to explicitly access indexed field

Define Custom Index-time Fields



(almost)

▶ Call an eval expression at search time: [stanza] EVAL-answer=42
▶ Field values don’t have to be indexed tokens, hard to filter in lispy
▶ answer=42 becomes [ OR 42 sourcetype::stanza ]
▶ Scan all events for the field value plus all events for that stanza
▶ Common use case: CIM normalization, e.g. Bluecoat TA:
EVAL-dest=coalesce(dest_ip, dest_host)

▶ No pre-search optimization
▶ Use sparingly when searching by a field

Calculated Fields



▶ Access logs, search for server errors: status>=500
▶ What indexed token to scan for? None - [ AND ]

▶ Can be solved with a lookup of known server error codes (CIM App)
▶ Can be solved with an indexed field

▶ Non-solution: status=5*, [ AND 5* ]
▶ Too many events have a 5* token somewhere

Comparisons



▶ NOT bad worked well: [ NOT bad ]
▶ What about NOT field=bad?
▶ Index-time? No problem: [ NOT field::bad ]
▶ Search time? [ NOT bad ]?

▶ That would rule out events like this:
field=good otherfield=bad!

▶ Instead, Splunk has to scan all the events

Remember NOT? Tricky…



▶ 2016-09-28 12:34:56.789 uid=2016 syscall=2

▶ Search for uid=2016, get [ AND 2016 ]
▶ Token is not very unique, scans all events from that year
▶ Common offenders: Small integers, true, yes, ERROR, etc.

▶ Can be solved with an indexed field
▶ Can sometimes be solved with TERM(uid=2016)
▶ Beware of uid="2016" – major breakers break TERM()

Value Uniqueness



▶ Any financial services people? – DE44500105175407324931

▶ Extract fields:(?<country>[A-Z][A-Z])(?<check>\d\d)…
▶ Search for country=DE, get lispy [ AND DE ] – oops!
▶ Can be fixed by fields.conf (but beware of scoping!)
[country] INDEXED_VALUE = <VALUE>*

▶ Search for check=44 – fixing in fields.conf gets ugly
[check] INDEXED_VALUE = *<VALUE>*
[check] INDEXED_VALUE = false

Fields From Partial Tokens



▶ Accelerated Datamodels and Reports get filled by frequent searches
▶ Users of accelerations get a large performance boost regardless of their lispy

efficiency – good!

▶ However!
▶ The frequent summarizing searches should be well-optimized
▶ Rule of thumb: The more often something will run for a long time into the future, 

the more time you should spend on optimizations

What About Accelerations?
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1. Love thy Job Inspector
2. Start to think of lispy when writing searches
3. Level 2: Think in lispy
4. Carefully consider opportunities for index-

time fields
5. Give extra scrutiny to…

• Searches using wildcards
• Small numbers
• Filtering through NOT – especially for fields
• Calculated fields
• These: 

Job Inspector,
Job Inspector,
Job Inspector!

Key 
Takeaways

31



© 2017  SPLUNK INC.

Don't forget to rate this session in the 
.conf2017 mobile app

Thank You


