Introducing Splunk Validated Architectures (SVA)
Optimizing Your Path To Success With Splunk

Sean Delaney | Principal Architect
Stefan Sievert | Staff Architect

September 2017 | Washington, DC
Forward-Looking Statements

During the course of this presentation, we may make forward-looking statements regarding future events or the expected performance of the company. We caution you that such statements reflect our current expectations and estimates based on factors currently known to us and that actual events or results could differ materially. For important factors that may cause actual results to differ from those contained in our forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live presentation. If reviewed after its live presentation, this presentation may not contain current or accurate information. We do not assume any obligation to update any forward looking statements we may make. In addition, any information about our roadmap outlines our general product direction and is subject to change at any time without notice. It is for informational purposes only and shall not be incorporated into any contract or other commitment. Splunk undertakes no obligation either to develop the features or functionality described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.
What Is This About?

SVA Definition
Proven reference architectures for stable, efficient and repeatable Splunk deployments

Blueprints, Characteristics And Architecture Best Practices
Goal & Scope

Why SVAs?
Benefits

Why you want to apply SVAs

- Empower customers to design and deploy Splunk more confidently
- Prevent snowflakes that are not scalable, reliable and/or maintainable
- Increase Customer Success
- Accelerate your time to value and agility when growing/scaling
- Minimize TCO for Splunk
In Scope For Svas
Components Of A SVA

▶ Diagrams
Visual representation of the reference architecture

▶ Characteristics
Written description of fitness-for-purpose and limitations

▶ Tier-Specific Considerations and Best Practices
What to look out for when building out a Splunk deployment
What Svas Do Not Address
Out Of Scope Items

- **Deployment technologies**, like operating systems & server hardware, since they are considered implementation choices

- **Deployment sizing** involves understanding data ingest and search volumes as well as search use cases and generally does not affect the deployment architecture
Who Is This For?

Intended Audience
Relevant Personas
Who Should Care

- **Enterprise Architects**
 Responsible for architecting Splunk deployments to meet enterprise needs

- **Consultants**
 Splunk consultants that provide Splunk architecture, design and implementation services

- **Splunk Administrators**
 Staff that is responsible for managing Splunk lifecycle

- **Managed Service Providers**
 Entities that deploy and run Splunk as a service for customers
Design Focus

Foundational Pillars
Foundational Pillars

- Availability
- Performance
- Scalability
- Security
- Manageability
Design Principles
Pillar-oriented guidelines

- Design principles are documented and assigned to the appropriate pillar

- Each tier-specific recommendation references the underlying design principle(s)
Design Principle Examples

Pillar: Security

▶ Design for a secure system from the start
▶ Employ state-of-the-art protocols for all communications
▶ Allow for broad-level and granular access to event data
▶ Employ centralized authentication
▶ Implement auditing procedures
▶ Reduce attack or malicious use surface area
Tier-Specific Recommendations Example

Tier: Search

- Minimize network path length between SHs and indexers - PERF
- Avoid using multiple, independent SHs – MGMT, SCAL, AVLB
- Consider LDAP Auth whenever possible – MGMT, SEC
- Ensure sufficient cores for concurrent search needs – PERF, SCAL
- Etc.
Topology Examples

A Sneak Peek
Example 1: Single Server

Topology Diagram

Single Server Deployment

Search/Indexing Tier

SH/IDX

Management

DS

Collection Tier

Forwarders

Network Inputs

Other Inputs
Example 1: Single Server

Characteristics

▶ Departmental, non-critical use cases up to ~300GB/day (Data Onboarding Test environments, small Enterprise log management)

▶ No High Availability for Search/Indexing

▶ Scalability limited by hardware capacity, but easy migration path to a distributed deployment exists

▶ Simple Management
Example 2: Distributed Single-Site Cluster

Topology Diagram
Example 2: Distributed Single-Site Cluster

Characteristics

- High Availability for data ingestion and search peers via configurable data replication
- Horizontally scalable indexing to multi-TB/day
- Total number of unique buckets in indexer cluster limited to 5MM as of Kimono (6.6), 15MM total buckets
- No DR capability in case of data center outage
- No HA capability for SH tier
- ES (if used) requires dedicated SH
- Replication is non-deterministic, cluster decides on replication target node
Example 3: Distributed Multi-Site Cluster

Topology Diagram
Example 3: Distributed Multi-Site Cluster

Characteristics

- Provides protection against site failure
- Adds Search Head Clustering to the search tier.
- Ideally, continuous operation of Search Head tier, when properly configured
- Dedicated ES SHC required
- Search head capacity is shared and (scheduled) search artifacts are replicated in each SHC
- WAN latency must be <100ms
How To Choose The Right SVA?

You Have To Pay For Getting Bling!
Topology Feature Matrix

<table>
<thead>
<tr>
<th></th>
<th>Single Server</th>
<th>Distributed</th>
<th>Single-Site</th>
<th>Multi-Site</th>
<th>+SHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingest HA (+search peer HA)</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>n/a</td>
</tr>
<tr>
<td>Search Tier HA</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Horizontal SH Scaling</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Horizontal IDXR Scaling</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Disaster Recovery/Site failover</td>
<td></td>
<td></td>
<td></td>
<td>●<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>Simple Management</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

(1) Management roles (CM, LS, etc.) may need to be failed over manually
You Pay For What You Get!

How architecture choices affect TCO

<table>
<thead>
<tr>
<th></th>
<th>Availability</th>
<th>Scalability</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Server</td>
<td>low</td>
<td>limited</td>
<td>fixed</td>
</tr>
<tr>
<td>Distributed</td>
<td>Ingest only</td>
<td>unlimited</td>
<td>Linear increase with node count</td>
</tr>
<tr>
<td>Clustered, Single</td>
<td>Ingest & Search (on indexers) HA</td>
<td>Bucket count limits</td>
<td>More nodes/storage for same ingest (RF)</td>
</tr>
<tr>
<td>Clustered, Multi</td>
<td>Ingest & Search, DR (on indexers)</td>
<td>Bucket count limits, WAN bandwidth</td>
<td>See above + WAN bandwidth cost</td>
</tr>
<tr>
<td>Added SHC</td>
<td>Search tier HA</td>
<td>Max. 50 SHC members</td>
<td>Linear increase with node count, need LB</td>
</tr>
</tbody>
</table>
What Are We Saying?

- Overbuilding a Splunk deployment results in
 - A more complex deployment that is…
 - Harder to manage (operate, troubleshoot, etc.) and support and will…
 - Cost you a lot of money for infrastructure and people

- Right-sizing a deployment to **meet your requirements** will
 - Provide you with the simplest architecture possible that…
 - Allows you to minimize your TCO for Splunk
#FAIL

What Svas Are Trying To Prevent
#FAIL 1: Syslog Data Collection

Trying to prevent UDP data loss
FAIL 2: IndexAndForward
Covering the DR case

Home-Grown Replication

Active Site

DR Site

Use Multi-Site Clustering for HA/DR needs
Summary

It's A Wrap!
Identify and define the requirements of your organization/customer
Don’t add ‘sexy’ things if they are not needed

Match requirements to the proper topology using the characteristics
You will get the required topology to meet your needs

Build out the topology using tier-specific recommendations
You will have a proven architecture

Choose implementation details
OS choices, Capacity planning, Sizing, Staffing
SVAs will be published as a **White Paper** in the splunk.com under the **Resources** section

We will update the content as the product feature set introduces future changes

We appreciate your feedback!

- Do you think this is useful content?
- What would make it better?
- Please let us know via your .conf app feedback. And thank you!
Q&A
Thank You

Don't forget to rate this session in the .conf2017 mobile app