
© 2017 SPLUNK INC.© 2017 SPLUNK INC.

Making the Most  
of the Splunk Scheduler

Paul J. Lucas | Principal Software Engineer, Splunk

September 25–28, 2017 | Washington, DC

© 2017 SPLUNK INC.

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in the
United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3RD PARTY PRESENTATIONS.

© 2017 SPLUNK INC.

Personal Introduction

▶ On the Core Engineering Team.
▶ Search Scheduler improvements

for Splunk Enterprise.
▶ Splunk Cloud remote storage.
▶ Deployment Server.
▶ Using C++ since the “cfront”

days at AT&T Bell Labs.
▶ Transit enthusiast. 😊

Principal Software Engineer

© 2017 SPLUNK INC.

▶ Who is this presentation for?  
 
This presentation is for Splunk Administrators of any experience level who
provision, monitor, or maintain Splunk Enterprise deployments. 
 
It’s especially for those who are currently experiencing capacity issues such as
searches that are either taking a long time to run or are being skipped.

Intended Audience

© 2017 SPLUNK INC.

▶ Scheduled Searches:
▶ Introduction
▶ How Cron Works
▶ Cron vs. Splunk Scheduler

▶ Splunk Scheduler Concepts:
▶ limits.conf Settings
▶ Deferred vs. Skipped
▶ Latency

Agenda

▶ Splunk Scheduler Details:
▶ How the Splunk Scheduler Works
▶ Priority Scoring

▶ Splunk Scheduler Tools:
▶ Distributed Management Console

▶ Takeaways

© 2017 SPLUNK INC.

Scheduled Searches

© 2017 SPLUNK INC.

▶ Splunk allows you to save your searches and run them on a schedule.
▶ Scheduled searches can be used to trigger an alert action (possibly when a

condition is met) or to speed-up dashboards.
▶ An alert action is either sending an e-mail or running a script.
▶ Example: index=_internal source=*splunkd.log* error

Scheduled Searches: Introduction

Title Too many errors
Trigger condition Number of Results
Number of results is Greater than: 5
in 1 minute

© 2017 SPLUNK INC.

▶ Scheduling is specified via a five-field cron string: 
 
 
 
 
 
 

▶ Field values: all (*), number (e.g., 0), ranges (e.g., 1-5), lists (e.g., 1,8,15,22),
and “every n” (e.g., */6).

▶ Example: 0 */6 1,15 * * means every 6 hours on the hour on the 1st and
15th of every month.

Scheduled Searches: Introduction

 * * * * *
 ! ! ! ! !
 ! ! ! ! !
 ! ! ! ! "### day	of	week	(0	-	6)	(Sunday–Saturday)
 ! ! ! "###### month	(1–12)
 ! ! "######### day	of	month	(1–31)
 ! "############ hour	(0–23)
 "############### minute	(0–59)

© 2017 SPLUNK INC.

▶ For each cron entry, calculate the next run-time of the command.
▶ Place all commands in a priority queue by time.
▶ Enter main loop:
▶ Examine the entry at the head of the queue.
▶ Calculate the delta between that entry’s next run-time and now.
▶ If delta > 0, sleep for that period of time.
▶ Run the entry’s command (in the background).
▶ Calculate the next run-time of the command and place it back on the queue

with that new time value.

How Cron Works

© 2017 SPLUNK INC.

▶ No job quotas.
▶ Entirely manual scheduling — have

to skew searches by hand: 
 
 
 
 

▶ Limited to a single machine.

Cron vs. Splunk Scheduler

▶ Quotas: limit search concurrency —
reserves CPU for other tasks.

▶ Searches over quota are deferred,
but implicitly retried repeatedly for
the duration of their periods until
either run or skipped.

▶ Can distribute searches across a
cluster of machines.

0 0 * * * command-1
15 0 * * * command-2
30 0 * * * command-3
45 0 * * * command-4

Cron Splunk Scheduler

© 2017 SPLUNK INC.

Splunk Scheduler
Concepts

© 2017 SPLUNK INC.

▶ max_searches_per_cpu: Maximum number of concurrent searches per CPU
(default = 1).

▶ base_max_searches: A constant added to max. total searches (default = 6).
▶ Given those, the total maximum number of concurrent searches allowed is: 
 
 
 
 

▶ max_searches_perc: Maximum number of concurrent searches the scheduler
can run as a percentage of max. total searches (default = 50).

limits.conf Settings

max.	total	searches	=	(max_searches_per_cpu	×	number_of_CPUs	
	 +	base_max_searches)	×	size_of_cluster

© 2017 SPLUNK INC.

▶ Some example numbers:

limits.conf Settings

CPUs
1 1 6 7 50% 3
8 1 6 14 50% 7
64 1 6 70 50% 35

limits.conf	setting

Calculated

ma
x_
se
ar
ch
es
_p
er
_c
pu

ba
se
_m
ax
_s
ea
rc
he
s

ma
x.	
tot
al	
sea
rch
es

ma
x_
se
ar
ch
es
_p
er
c

ma
x.	
sch
ed
ule
d	s
ea
rch
es

© 2017 SPLUNK INC.

▶ max_searches_perc: Maximum number of concurrent searches the scheduler
can run as a percentage of max. total searches (default = 50).

▶ Variance (≥6.3): Allow max_searches_perc to vary by time or day:

max_searches_perc Setting

max_searches_perc = 50

Allow value to be 75 anytime on weekends.
max_searches_perc.1 = 75
max_searches_perc.1.when = * * * * 0,6

Allow value to be 90 between midnight and 5am.
max_searches_perc.2 = 90
max_searches_perc.2.when = * 0-5 * * *

© 2017 SPLUNK INC.

▶ As mentioned, searches over quota are deferred, but are implicitly retried
repeatedly for the duration of their periods until either run or skipped.

Deferred vs. Skipped

✔ Run
✖ Deferred
✖ Skipped

✔✖

✔S1

S5

S2 ✔
S3 ✔
S4 ✔

✖✖

Time

✖✖✖

Skipped

✖✔✖S5 ✖

Time

✔

S1 ✔
S2 ✔
S3 ✔
S4 ✔

Deferred

✖

FREE! FREE!

© 2017 SPLUNK INC.

▶ “Latency” is the difference between a search’s scheduled and dispatched times. 
 
 
 
 

▶ Non-zero latency means scheduler is oversubscribed (at least temporarily).
▶ Causes delays in alerting and may lead to skipping.
▶ May be mitigated by schedule windows (≥6.3 — more later).

Latency

✔✖S5 ✖

Latency
scheduled	time dispatch	time

✖

© 2017 SPLUNK INC.

Splunk Scheduler
Details

© 2017 SPLUNK INC.

▶ For each search, calculate the next run-time of the search.
▶ Place all searches in a map<search_id,next_runtime>.
▶ Enter main loop:
▶ For each search, if its next run-time ≤ now, add it to the candidate search list.
▶ Randomly shuffle the candidate list.
▶ For each candidate search, calculate its priority score.
▶ Sort all candidate searches by priority score.
▶ For each candidate search, if it doesn’t exceed quota, run it; calculate the next

run-time of the search, and update the map.

How the Splunk Scheduler Works

© 2017 SPLUNK INC.

▶ Multi-term priority scoring (≥6.3) mitigates search latency, skipping, and
starvation (when oversubscribed) — improved performance by at least 25%.

Priority Scoring

score(j)	 =	next_runtime(j)	
	 +	estimated_runtime(j)	×	priority_runtime_factor	
	 –	skipped_count(j)	×	period(j)	×	priority_skipped_factor	
	 +	window_adjustment(j)	
	 –	priority_adjustment(j)

© 2017 SPLUNK INC.

▶ Multi-term priority scoring (≥6.3) mitigates search latency, skipping, and
starvation (when oversubscribed) — improved performance by at least 25%.

Priority Scoring

score(j)	 =	next_runtime(j)	
	 +	estimated_runtime(j)	×	priority_runtime_factor	
	 –	skipped_count(j)	×	period(j)	×	priority_skipped_factor	
	 +	window_adjustment(j)	
	 –	priority_adjustment(j)

☞

© 2017 SPLUNK INC.

▶ Multi-term priority scoring (≥6.3) mitigates search latency, skipping, and
starvation (when oversubscribed) — improved performance by at least 25%.

Priority Scoring

score(j)	 =	next_runtime(j)	
	 +	estimated_runtime(j)	×	priority_runtime_factor	
	 –	skipped_count(j)	×	period(j)	×	priority_skipped_factor	
	 +	window_adjustment(j)	
	 –	priority_adjustment(j)

☞

© 2017 SPLUNK INC.

▶ Multi-term priority scoring (≥6.3) mitigates search latency, skipping, and
starvation (when oversubscribed) — improved performance by at least 25%.

Priority Scoring

score(j)	 =	next_runtime(j)	
	 +	estimated_runtime(j)	×	priority_runtime_factor	
	 –	skipped_count(j)	×	period(j)	×	priority_skipped_factor	
	 +	window_adjustment(j)	
	 –	priority_adjustment(j)
☞

© 2017 SPLUNK INC.

▶ Problem: Scheduler can’t distinguish between searches that (A) really should run
at a specific time (just like cron) from those that (B) don’t have to. This can cause
latency or skipping.

▶ Solution (≥6.3): Give a schedule window (manually, in minutes) to searches that
don’t have to run at precise times. 
 
Example: For a given search, it’s OK if it starts running sometime between
midnight and 6am, but you don’t really care when specifically.

Scoring: Window Adjustment

© 2017 SPLUNK INC.

▶ Auto Windows (≥6.5): An auto value calculates the maximum window for you.

Scoring: Window Adjustment

S1

Period	(P)

Runtime	(R)

Now	(T₀) Future	(T₁)

Runtime	(R)

Window	(P	–	R) Window	End	(E)

▶ S1 can start any time between T0 and E and still finish before its next run at T1.

© 2017 SPLUNK INC.

▶ A search with a schedule window helps other searches.
▶ It’s best to use auto windows.
▶ Manual windows require the edit_search_schedule_window capability.
▶ Manual windows should not be used for searches that run every minute.
▶ Manual windows must be less than a search’s period.
▶ Priority adjustments (higher, highest) take precedence over windows.
▶ Windows are not a deadline.

Scoring: Window Adjustment

Schedule Window key points:

© 2017 SPLUNK INC.

▶ Multi-term priority scoring (≥6.3) mitigates search latency, skipping, and
starvation (when oversubscribed) — improved performance by at least 25%.

Priority Scoring

score(j)	 =	next_runtime(j)	
	 +	estimated_runtime(j)	×	priority_runtime_factor	
	 –	skipped_count(j)	×	period(j)	×	priority_skipped_factor	
	 +	window_adjustment(j)	
	 –	priority_adjustment(j)☞

© 2017 SPLUNK INC.

▶ Scheduled saved searches are stratified into priority tiers: 
Default = same as other default searches as he same tier 
Higher = higher than default searches of the same tier 
Highest = higher than some searches of other tiers

Scoring: Priority Adjustment

Realtime-Scheduled* (RTS)

Continuous-Scheduled (CS)

Data-Model-Accelerated (DMA)

Auto-Summary (AS)
Low Priority High

*	Most	common	tier.

Default
Higher
Highest

© 2017 SPLUNK INC.

▶ Problem: Scheduler dispatches all your searches as soon as possible after the
zeroth second of a minute. (For most customers, this is a good thing!) However,
for lots of searches that run frequently, this can cause network or other
infrastructure saturation.

▶ Solution (≥6.6): “randomly” skew (large numbers of) your searches so they don’t
start at the zeroth second. New property in savedsearches.conf:
allow_skew

— A maximum duration N (seconds, minutes, hours, days); OR:
— A maximum percentage of period 0–100%.
Examples: 
 allow_skew = 60s  
 allow_skew = 50%  
 allow_skew = 100 ERROR: no duration unit or %

Dispatch Time Skewing

© 2017 SPLUNK INC.

▶ Very Skew-able searches are those that may be skewed by as much as their
entire period; they are only those having a cron_schedule in one of the
following forms:

Dispatch Time Skewing (cont.)

Min Hour Day Mon DoW Meaning
* * * * * Every	minute

*/N * * * * Every	N	minutes
0 * * * * Every	hour
0 */N * * * Every	N	hours
0 0 * * * Daily	(at	midnight)

For such searches, it’s likely that the
user doesn’t care at what actual minute
or hour the search runs just so long as
it’s once per N minutes/hours.

© 2017 SPLUNK INC.

▶ Somewhat skew-able searches are those that do not have cron_schedule
strings among one of the aforementioned forms meaning they may be skewed by
at most 60 seconds.

▶ Rationale: cron_schedule strings that contain either specific (non-zero)
minute(s) or hour(s) shall be assumed to have been precisely specified by the
user to run at those specific times. Therefore, the scheduler should not skew
such searches (much).

Dispatch Time Skewing (cont.)

© 2017 SPLUNK INC.

Dispatch Time Skewing (before)

© 2017 SPLUNK INC.

Dispatch Time Skewing (after)

© 2017 SPLUNK INC.

▶ What about max_searches_perc? 
Before skewing, lowering max_searches_perc was believed to be a way to
solve this problem. Doing so should cause the searches it can’t run now to be run
later. However, the problems with using max_searches_perc this way are:
1. A Splunk Administrator would have to use trial-and-error to find a “Goldilocks”

value: too high and “spikiness” still happens; too low and searches may get
skipped.

2. max_searches_perc is intended to reserve CPU for ad-hoc searches, so
using it to prevent “spikiness” isn’t what it was intended for.

Dispatch Time Skewing (cont.)

© 2017 SPLUNK INC.

▶ Skewing solves a slightly different (and rarer) problem than windows (≥6.3).
▶ Schedule windows convey searches’ lesser importance allowing searches of

greater importance to have a better chance of running under resource-
constraint.

▶ Search Skewing spreads searches regardless of importance out over a period
of time so they collectively don’t overwhelm hardware.

▶ Windows and skewing are independent.
▶ Skewed searches are still subject to windows.

Dispatch Time Skewing vs. Schedule Windows

© 2017 SPLUNK INC.

Splunk Scheduler
Tools

© 2017 SPLUNK INC.

▶ The Distributed Management Console (DMC) is the way to monitor a Splunk
Enterprise deployment — including the search scheduler (≥6.4).

▶ To access the DMC: Settings (menu) > Monitoring Console (icon) > Scheduler >
Scheduler Activity: Instance/Deployment.

▶ There are many numbers and charts there — too many to cover here — so I’ll
just cover the two that I think are the most important:
1. Skipped Searches.
2. Latency.

Distributed Management Console (DMC)

© 2017 SPLUNK INC.

▶ At the top of the DMC page, there are several numbers. Two of the most
important are Skip Ratio and Average Execution Latency.

DMC Scheduler Activity

© 2017 SPLUNK INC.

▶ What this chart shows:  
Discretized counts of
skipped searches.

DMC Scheduler Activity: Skipped Searches

A. Reason	—	Why?	
B. Name	—	Which?	
C. Alerts	—	Effect?	
D. User	—	Who?	
E. App

© 2017 SPLUNK INC.

▶ What this chart shows: Discretized amounts of latency.

DMC Scheduler Activity: Latency

A. Name	—	Which?	
B. Alerts	—	Effect?	
C. User	—	Who?	
D. App

© 2017 SPLUNK INC.

1. Recent Splunk Enterprise versions added better
priority scoring and search windows for much
improved search scheduling by at least 25%.

2. For infrequent searches (hourly, daily, etc.) use
schedule windows, preferably auto windows.

3. Use the DMC (under Settings (menu) >
Monitoring Console (icon) > Scheduler >
Scheduler Activity: Instance/Deployment) to
monitor scheduler performance: lots of skipped
searches or high latency is bad.

4. If, despite tuning, you still have frequently
skipped searches or high latency, then you
probably need a bigger CPU or more machines
in your cluster.

Key
Takeaways

© 2017 SPLUNK INC.

Q&A

© 2017 SPLUNK INC.© 2017 SPLUNK INC.

Don't forget to rate this session in
the .conf2017 mobile app

Thank You

© 2017 SPLUNK INC.

Line and Shape Assets
Copy/paste these graphics to use in your own presentations

White background overlay,  
Gray 80%, Accent 3, Transparency 85%

Dark background overlay

Green Line, 1pt, Cap type: Round

Gray 25% Line, 1pt, Cap type: Round

Gray 25% Line, 1pt, Cap type: Round

Icon placeholderIcon placeholder

Green Line, 1pt, Cap type: Round

Gray 25% Line, 1pt, Cap type: Round

Gray 25% Line, 1pt, Cap type: Round

Dark background assets White background assets

