
Revealing the Magic
The Lifecycle of a Splunk Search

Kellen Green | Senior Software Engineer

September 27th, 2017 | Washington, DC

About Myself
web developer

© 2017 SPLUNK INC.

1. Develop a deeper understanding of the
core components that make up a Splunk
search.

2. Increase performance of your searches
through more efficient queries.

3. Obtain stronger grasp of which
deployment types are better suited for
specific workloads.

Let's debunk that!
Magic?

© 2017 SPLUNK INC.

▶ One event per day
from Sept. 1 - 26
• Random hour of the day

▶ Indexed field foo
• Descending A - Z

▶ Unindexed field bar
• Ascending Z - A

Data Set
26 event CSV file

time,foo,bar
2017-09-01T16:00:00 +0000,a,z
2017-09-02T02:00:00 +0000,b,y
2017-09-03T12:00:00 +0000,c,x
2017-09-04T18:00:00 +0000,d,w
2017-09-05T03:00:00 +0000,e,v
2017-09-06T08:00:00 +0000,f,u
2017-09-07T22:00:00 +0000,g,t
...

index="conf2017" foo="0"

Sept. 1st to the 27th

Search #1
Indexer Workflow

Yep, but I promise it's interesting!

No Results?
index="conf2017" foo="0"

Client to Indexer
index="conf2017" foo="0"

© 2017 SPLUNK INC.

▶ Root directory for
indexes.

▶ Check if queried
index directory exists.

▶ Specify an index to
improve improve
search performance.

Indexes Directory
index="conf2017" foo="0"

$ cd $SPK_IDX/var/lib/splunk/
$ ls -l

audit
authDb
conf2015
conf2016
conf2017
defaultdb
historydb
Kvstore

© 2017 SPLUNK INC.

▶ colddb houses older
searchable data.
• Implement cheaper

storage solutions.

▶ db directory for fresh
data in high demand.

▶ Configurable in
indexes.conf.

Index Directory
index="conf2017" foo="0"

$ cd conf2017/
$ ls -l

colddb
datamodel_summary
db
thaweddb

© 2017 SPLUNK INC.

▶ Hot buckets are still
being written to.

▶ Warm buckets are
event immutable.
• Named by time range.

▶ Specify strict time
range to boost
Performance.

Buckets Directory
index="conf2017" foo="0"

$ cd db/
$ ls –l

.bucketManifest
CreationTime
db_1468867200_1471545599_0
db_1485388800_1493228720_1
hot_v1_2
GlobalMetaData

© 2017 SPLUNK INC.

▶ Scanning buckets
can be expensive.

▶ Bloom filter provides
us with a fast way to
determine if a term is
NOT in a bucket.

Bloom Filter
index="conf2017" foo="0"

$ cd db_1485388800_1493228720_1/
$ ls -l

1485388800-1483228800.tsidx
bloomfilter
bucket_info.csv
Hosts.data
optimize.result
rawdata
Sources.data
SourceTypes.data
Strings.data

hash_1("foo=0") == 0

hash_2("foo=0") == 7

▶ Second hash result points to false, so bucket will not contain matching events.

Bloom Filter Hashing
index="conf2017" foo="0"

1 1 0 0 1 0 1 0 0

▶ For search terms that are common, the bloom filter will do nothing to improve
search performance.

▶ Huge performance boost for rare and nonexistent events.
• Speed up on the order of 100x (1-2s to 10ms).

Bloom Filter Performance
index="conf2017" foo="0"

index="conf2017" foo="a"
vs

index="conf2017" bar="z"

Search #2
Indexing

2017-09-01T16:00:00 +0000,a,z

Both Give Same Result
foo="a" vs bar="z"

© 2017 SPLUNK INC.

▶ Index file used to
reduce the number of
matching events.

▶ Lexigraphically sorted
array of all terms
within the bucket.

▶ The flag for |delete
is also set here.

TSIDX File
foo="a" vs bar="z"

$ pwd
db_1485388800_1493228720_1

$ ls –l
1485388800-1483228800.tsidx
bloomfilter
bucket_info.csv
Hosts.data
optimize.result
rawdata
Sources.data
SourceTypes.data
Strings.data

▶ The Lispy query is used to when searching through TSIDX files.

▶ Created by the Search Head at search time.

▶ foo="a" becomes [foo::a] in Lispy.

▶ This will match all events where foo equals exactly a.

Lispy Query
foo="a" vs bar="z"

▶ bar="z" becomes [z] in Lispy.

▶ This will match all events that contain z anywhere within the event.

▶ This might seem counter intuitive, but there is a good reason for this behavior.

Lispy for Unindexed Fields
foo="a" vs bar="z"

[foo::a]

[z]

Post TSIDX Results
foo="a" vs bar="z"

Time Foo Bar
2017-09-01T16:00:00 +0000 a z
2017-09-26T07:00:00 +0000 z a

Time Foo Bar
2017-09-01T16:00:00 +0000 a z

© 2017 SPLUNK INC.

▶ journal.gz
compressed slices of
raw events.

▶ slices.dat map
from TSIDX to slice.

▶ Remaining unwanted
events will be filtered
during extraction.

Raw Data Extraction
foo="a" vs bar="z"

$ cd rawdata/
$ ls -l

journal.gz
slicemin.dat
slicesv2.dat

▶ Increased number of potential matching events coming out of TSIDX.

▶ This list is kept in memory, leading to increased memory usage.

▶ More events, leads to more CPU needed for Journal decompression.

Cons of Unindexed Fields
foo="a" vs bar="z"

▶ This can quickly explode the size of your TSIDX files.
• Leading to slow queries across the board.

▶ Only recommended for fields who's key-val pair is important, AND has a value
which frequently occurs in other fields.

• For example the pair foo="a" is important and often searched.
• But bar="a", baz="a", and biz="a" are also common occurrences.
• Then foo might make for a good index candidate.

Index Everything?
foo="a" vs bar="z"

© 2017 SPLUNK INC.

▶ Shows us the number
of matching TSIDX
events for a given
Lispy query.

▶ Useful for hunting
down field indexing
candidates.

Walklex Command
foo="a" vs bar="z"

$ walklex my.tsidx "foo::a"
0035130149.tsidx "foo::a"
my needle: foo::a
209 1 foo::a

$ walklex my.tsidx "z"
0035130149.tsidx "z"
my needle: z
287 2 z

index="conf2017" foo="*a"
vs

index="conf2017" foo="a*"

Search #3
Wildcards

2017-09-01T16:00:00 +0000,a,z

Again Same Result
foo="*a" vs foo="a*"

▶ Terms are sorted lexicographically
within the TSIDX file.

▶ Binary search the index for the first
matching term.

▶ For foo="a*", continue downward
until we come to the first none
matching term.

Trailing Wildcard
foo="*a" vs foo="a*"

Term
e
f

foo::a
foo::b
foo::c
foo::d
foo::e
foo::f
foo::g

▶ Same as trailing wildcard, start with
the first matching term.

▶ However this time we must check all
events that match our field name.

▶ Only when we get to "g", can we
stop the search.

Leading Wildcard
foo="*a" vs foo="a*"

Term
f

foo::a
foo::b
foo::c

...
foo::x
foo::y
foo::z

g

▶ What if we searched for bar="*z"?

▶ Lispy is for this search is "[]".

▶ Skips TSIDX reducing altogether,
relying completely on Journal
extraction.

Trailing Wildcard + Unindexed
foo="*a" vs foo="a*"

Term
f

foo::a
foo::b
foo::c

...
foo::x
foo::y
foo::z

g

index="conf2017"
| transaction date_hour

vs
index="conf2017"

| stats count by date_hour

Search #4
Transactions

Back to the Search Head
transaction vs stats

© 2017 SPLUNK INC.

▶ Directory of all saved
and running searches
on the Search Head.

▶ sid can be obtained
in the Job Inspector.

Dispatch Folder
transaction vs stats

$ cd $SPK_SH/var/run/splunk/dispatch
$ ls –l

1501601198.142
1501601202.143
1501601739.144
1501601740.145
1501601741.146
1501601742.147

© 2017 SPLUNK INC.

▶ Collection of all data
being returned from
the indexers.

▶ results.csv.gz
compressed events.

▶ timeline.csv
UI timeline numbers.

Search Folder
transaction vs stats

$ cd 1501601741.146/
$ ls –l

args.txt
buckets
custom_prop.csv
events
timeline.csv
info.csv
peers.csv
results.csv.gz
search.log

results.csv.gz

timeline.csv

Transaction Workflow
transaction vs stats

Stats Workflow
transaction vs stats

Performance boost for transactions running in parallel.

Search Head Cluster
transaction vs stats

Distributed Search & Index Cluster

Scalable performance boost to stats and eval.

transaction vs stats

▶ stats only concerns itself with a
single event at once.

▶ Requires only one pass to complete
the computation.

▶ For stats count Splunk returns
value plus event occurrence count.
• For example: hour "09" has 2 events.

Stats Computation
transaction vs stats

Time Foo Bar
2017-09-01T09:00:00 a z
2017-09-02T07:00:00 b y
2017-09-03T02:00:00 c x
2017-09-04T13:00:00 d w
2017-09-05T23:00:00 e v

…
2017-09-21T15:00:00 v e
2017-09-23T16:00:00 w d
2017-09-24T09:00:00 x c
2017-09-25T06:00:00 y b
2017-09-26T10:00:00 z a

▶ Splunk must iterate over each event
for every transaction window.

▶ Looking at a time complexity
difference between n and n2.

▶ Running only on a single Search
Head doesn't help the situation.

Transaction Discovery
transaction vs stats

Time Foo Bar
2017-09-01T09:00:00 a z
2017-09-02T07:00:00 b y
2017-09-03T02:00:00 c x
2017-09-04T13:00:00 d w
2017-09-05T23:00:00 e v

…
2017-09-21T15:00:00 v e
2017-09-23T16:00:00 w d
2017-09-24T09:00:00 x c
2017-09-25T06:00:00 y b
2017-09-26T10:00:00 z a

index=conf2017
| transaction foo

| stats count by foo

Search #5
transaction plus stats

index=conf2017

| transaction foo

| stats count by foo

▶ Splunk runs everything on the
Indexer, until the first "slow"
command forces otherwise.

▶ Everything trailing that command, will
be forced to run on the Search Head.

▶ transactions and joins are
examples of commands which would
trigger this behavior.

Where Does it Run?
transaction plus stats

© 2017 SPLUNK INC.

1. Leverage stats and eval over
transactions whenever possible.

2. Choose trailing wildcards over leading in
queries that require such functionality.

3. Look into indexing important fields who
shares values with other fields.

4. Move slow commands as far right into the
query string as possible.

You're all wizards now!
Takeaways

© 2017 SPLUNK INC.

Just Splunk
No Magic

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Q&A

