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Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.



Forward Looking Errata

3

▶ Having just completed the first draft of this presentation, I can guarantee 
you that there will be updates. Check out https://dvsplunk.com/ for those 
updates!



Personal Introduction
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▶ David Veuve
Principal Security Strategist, Splunk 

▶ SME for UEBA, Security, Architecture
▶ dveuve@splunk.com
▶ Former Splunk Customer
▶ Primary author of the Splunk Security 

Essentials app

▶ 2017 Talks:
• Security Ninjutsu Part Four (Hi!)
• Searching FAST: Start Using tstats

and other acceleration techniques
• Quickly Advance Your Security Posture 

with Splunk Security Essentials
▶ Prior Conf Talks:

• How to Scale Search from _raw to tstats
• Security Ninjutsu Part Three: .conf2016
• Security Ninjutsu Part Two: .conf 2015
• Security Ninjutsu Part One:   .conf 2014
• Passwords are for Chumps: .conf 2014



Intro
Section subtitle goes here



Part One: 2014
▶ Visibility, Analysis, 

*AND* Action
▶ David’s First 

Anomaly Detection

Part Two: 2015
▶ Correlation Across 

Multiple 
Sourcetypes

▶ Risk Across The 
Org.. In Splunk!

▶ Strategies to 
Counter Alert 
Fatigue

Part Three: 2016
▶ Real Correlation 

Searches from 
Real Customer

▶ Content 
Development 
Process

Past Security Ninjutsus

There is lots of valuable content in the prior Ninjutsus - I highly recommend you visit them.
They are not pre-requisites for thie year.



▶ If you forced my co-workers to pick a single top 
skill of David Veuve, single top reason to bring 
him into a meeting, it is: SPL Skills

▶ Let David be David - here is all the SPL fit to 
print

▶ You are looking at the PDF copy of these slides. 
There is a lot of context and explanation in these 
slides.

▶ I recommend checking out the video as well, to 
help reinforce the key takeaways, and use this 
PDF as the reference to implement those ideas

Ninjutsu 2017!
SPL AWESOMESAUCE



▶ Not explicitly focused on this session, 
but lots of good working detection 
logic

▶ Also demonstrates what you *can* 
do with Splunk and Security 
Detection

Oh Snap, there’s an App?
What’s the happs.. there’s an app?

https://splunkbase.splunk.com/app/3435/
Splunk Security Essentials



So What Are We Going to Talk About?
Did someone say "Obligatory Word Cloud"?



▶ Very little of what was covered in this deck was actually built or discovered by 
me.

▶ We all stand on the shoulders of giants, and I like to think the giants I stand on 
the shoulders of are as tall as they come.

▶ Major shout outs go to far too many people to mention here, including many of 
my customers who have come up with innovative ideas.

▶ Also, you know, the engineers deserve some credit for building the product in the 
first place, and anticipating so many needs that we would have while also 
allowing it to support so many needs they couldn’t anticipate.

▶ /me hat tips

Most Important Announcement



▶ Over the rest of the presentation, we will go through different SPL techniques that 
have opened eyes and helped Splunkers in the past.

▶ For each technique we will state:
• Problem statement: Why do you care?
• Describe the technique: How do you solve?
• Lots of real SPL to do this: Pics or it didn’t happen

Let’s Get Into It
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Intermediate Techniques
Where was introductory? This presentation starts at 5 and goes to 15.



▶ "I have 7 different sourcetypes with different field names for authentication and I 
want to write just one search that crosses all of those"

▶ "I want to write a presentation on security SPL in a way that can apply to any 
security customer and represent concepts in generic terms"

▶ The common information model allows us to do exactly that - use a single 
nomenclature across many searches, many sourcetypes, in many environments

Technique: Common Information Model
Background and Challenges



▶ Building a dashboard? Print something good, and then drilldown well.

Technique: Common Information Model

tag=authentication 

| chart count over src by action 

| where success>0 AND failure>10 

We can just say tag=authentication instead of 
specifying our Windows Logs, Linux Logs, PAN Auth

Logs, Oracle Auth Logs… (I could go on all day)

action is a field defined in the Common Information 
Model - look at how we can just reference it so easily 

and it will track successes or failures across all 
sourcetypes

Ah, building correlation searches on Splunk is easy!



▶ Conf 2016: The Power of Data Normalization: A Look at CIM Under the Hood
Mark Bonsack and Vlad Skoryk
• http://conf.splunk.com/files/2016/slides/the-power-of-data-normalization-a-look-at-cim-under-

the-hood.pdf
• http://conf.splunk.com/files/2016/recordings/the-power-of-data-normalization-a-look-at-cim-

under-the-hood.mp4

Technique: Common Information Model
Resources



▶ I assume you already know the basics of eval, but there are several functions I 
use often that have wow’d some people.

▶ "How do I deal with different data types containing multiple field names?"
▶ "I hate nested if statements!"
▶ "I want to do super advanced string manipulations"

▶ Even if you don’t see an immediate use case for these techniques, remember 
them. I promise it will be worth it.

Technique: Eval
Background and Challenges



▶ coalesce is an often overlooked function, that will return the first non-null value. 
▶ Whenever you have multiple data types, you will invariably have different field 

names for the same value. Combining them into one field without overwriting 
different values is done by most Splunk users with if statements or other extreme 
hijinks. coalesce is much easier.

Technique: Eval
The coalesce Function

(sourcetype=datasource1 Source_IP=*) OR
(sourcetype=datasource2 srcip=*)

| eval src_ip = coalesce(srcip, Source_IP)

Begin with your disparate data sources

For datasource1, srcip will be null. For datasource2, 
Source_IP will be null. src_ip will always have the 

right result.



▶ case is skipped by almost everyone who has never been a programmer. If you’ve been a 
programmer, you already know about it. If you haven’t, get psyched.

▶ One of the greatest strengths of eval is that it allows you to embed all manner of business logic. 
Invariably, this requires you to have if statements… but often, you end up with multiple scenarios. 
If a, then x, if b, then y, if c, then z, if d, then throw an error. 

▶ Many use nested if statements, but case handles multiple conditions with ease. 

Technique: Eval
The case Function

sourcetype=datasource1 

| eval direction = case(
cidrmatch("10.0.0.0/8", src_ip) AND NOT 

cidrmatch("10.0.0.0/8", dest_ip), "outgoing", 
NOT cidrmatch("10.0.0.0/8", src_ip) AND  

cidrmatch("10.0.0.0/8", dest_ip), "incoming", 
cidrmatch("10.0.0.0/8", src_ip) AND 

cidrmatch("10.0.0.0/8", dest_ip), "internal", 
1=1, "outgoing to outgoing.. Add the public IP ranges")

Begin with your dataset

Conditional One: Outgoing Traffic

Conditional Two: Incoming Traffic

Conditional Three: Internal Traffic

Default (1=1): Whatever Else



▶ When it comes to applying business logic via eval, there are tons of options, mostly covered here:
http://docs.splunk.com/Documentation/SplunkCloud/6.6.0/SearchReference/ConditionalFunctions

▶ A favorite of mine is searchmatch. I have seen it be slower than a highly optimized field-based 
approach, but it makes logic so easy that anyone can get started with it.

▶ What searchmatch will do is simply run a search, just as if you used the | search command, but 
within an eval if or case statement. Here are some examples:

Technique: Eval
The searchmatch Function

sourcetype=what_have_you

| eval is_us = if(searchmatch("country: US"), 1, 0)

| eval do_errors_exist = if(searchmatch("error"), 1, 0)

| stats 
count 
sum(is_us) 
count(eval(searchmatch("type=important") 

by do_errors_exist

This *should* be extracted into a field, but if you 
haven’t done it yet, you can use searchmatch.

Maybe we just need to know if a particular string is in 
the raw logs

We are just checking a field here, which you could 
do directly, but if you’re not comfortable with more 

advanced methods yet, stay simple. 
And of course we can embed this into stats - see 

eval + stats in this presentation for more here. 



▶ Often we run into scenarios where you need to do string manipulation. In Splunk we often end up 
using | rex for these scenarios, as it can do regex field extraction and also sed search and 
replace. However, those are universal. With eval and replace, you can put this inside of a 
conditional.

Technique: Eval
The replace Function

sourcetype=what_have_you

| eval _raw=if(NOT searchmatch("country: US"), 
replace(_raw, "user=\S*", "user=XXXXX"), 
_raw)

| eval user=if(NOT searchmatch("country: US"), 
"XXXXX", 
_raw)

If this is not a US message, let’s replace the 
username with a series of Xs in the raw log

Let’s do the same thing with the username field.

We don’t actually recommend enforcing field based 
anonymization this way due to tricky workarounds, but it is worth 

nothing how this is possible for some circumstances.



▶ If you’ve ever had to deal with complicated JSON or XML, the eval spath function is a lifesaver. It 
is similar to the | spath command, but it can be embedded in conf files.

Technique: Eval
The spath Function

sourcetype=my_XML

| eval sender = spath(_raw, "envelope.header.sender")

| rex max_match=0 "(?<transaction>)<trans>.*?</trans>)
| mvexpand transaction

| eval payload=spath(transaction, "trans.body")
| eval payload_length = len(payload)

| table sender payload_length payload

We can extract XML or JSON values out of _raw 
logs

When we deal with very complicated json, mvfields
become very important. We will cover that in Multi-

Value fields, later in this presentation.

You can also apply this to individual fields, quickly 
and easily. 



▶ I know what you’re saying - where is a search command, it’s not eval. But a common question I 
get is how | search is different from | where. The big difference is that | where uses eval logic.

▶ Anything you would put into the conditional in an if statement, you can put into a where clause.

Technique: Eval
The where Search Command

sourcetype=what_have_you

| where 
( 

country!="US"
AND NOT searchmatch("country: US") 

) 
OR match(

urldecode(query_string), 
"[rR]estricted")

You do have to use the more rigid eval type syntax 
here, but you can do some much more advanced 

logic.

Did you know you can do urldecoding (e.g., %23 -> 
#, %24 -> $, etc.)? And regex matching? All of that in 

a where clause.



▶ "You have JSON, so your life is easy! Oh, did you say nested JSON? Eep…"
▶ "I want to tag events just for a specific search!"
▶ "I want to analyze IP occurrences, whether it’s src_ip or dest_ip, I just care about 

ip"
▶ "For some reason I have a multi-value field… I want to analyze each field 

individually!"

▶ Multi-Value fields are a great swiss army knife inside of SPL, but they’re also one 
of the least obvious techniques. Let’s look at how they work. 

Technique: Multi-Value Fields
Background and Challenges



▶ Simple JSON data is very easy to deal with. Poorly structured data is a pain.

Technique: Multi-Value Fields
JSON data

sourcetype=datasource1 

| eval direction = case(
cidrmatch("10.0.0.0/8", src_ip) AND NOT 

cidrmatch("10.0.0.0/8", dest_ip), "outgoing", 
NOT cidrmatch("10.0.0.0/8", src_ip) AND  

cidrmatch("10.0.0.0/8", dest_ip), "incoming", 
cidrmatch("10.0.0.0/8", src_ip) AND 

cidrmatch("10.0.0.0/8", dest_ip), "internal", 
1=1, "outgoing to outgoing.. Add the public IP ranges")

Begin with your dataset

Conditional One: Outgoing Traffic

Conditional Two: Incoming Traffic

Conditional Three: Internal Traffic

Default (1=1): Whatever Else



▶ case is skipped by almost everyone who has never been a programmer. If you’ve been a 
programmer, you already know about it. If you haven’t, get psyched.

▶ One of the greatest strengths of eval is that it allows you to embed all manner of business logic. 
Invariably, this requires you to have if statements… but often, you end up with multiple scenarios. 
If a, then x, if b, then y, if c, then z, if d, then throw an error. 

▶ Many use nested if statements, but case handles multiple conditions with ease. 

Technique: Multi-Value Fields
Tagging Events

sourcetype=datasource1 

| eval direction = case(
cidrmatch("10.0.0.0/8", src_ip) AND NOT 

cidrmatch("10.0.0.0/8", dest_ip), "outgoing", 
NOT cidrmatch("10.0.0.0/8", src_ip) AND  

cidrmatch("10.0.0.0/8", dest_ip), "incoming", 
cidrmatch("10.0.0.0/8", src_ip) AND 

cidrmatch("10.0.0.0/8", dest_ip), "internal", 
1=1, "outgoing to outgoing.. Add the public IP ranges")

Begin with your dataset

Conditional One: Outgoing Traffic

Conditional Two: Incoming Traffic

Conditional Three: Internal Traffic

Default (1=1): Whatever Else



▶ Most commonly you have a multi-value field 
that you just want to split (e.g., two IP 
addresses that you want to split into two 
different events).

▶ This is easily done with 
mvexpand {field name}

▶ Keep in mind though that this will split *all* of 
the fields. If you only need a couple of fields, 
then use | fields beforehand to get rid of the 
others so that you don’t consume excessive 
memory.
• Splunk does try to deal with that stuff 

automatically, but I like to guide Splunk
here.

▶ The other most common scenario I see is 
you have two values that are the same for a 
particular value. Usually this is a quirk of the 
data generator, but sometimes you will have 
the same value twice for every field.

▶ Two approaches for this scenario. The 
easiest (that I just learned!) is: 
| eval value=mvdedup(value)

▶ A slightly heavier but also more flexible 
approach is using streamstats, as you have 
all of the flexibility of stats:
| streamstats window=1 values(value) as 
value values(eval(NOT match(value, "^\d")) 
as value2

Technique: Multi-Value Fields
How Did I Get Here? How do I get out of Multi-Value land?



▶ One of the scenarios where I use multi-value fields decently often is to simplify source/dest
analysis. In a typical perimeter NGFW log, you have src_ip, dest_ip, src_translated_ip, and 
dest_translated_ip. If I want to track the top # of IPs associated with IPS alerts, I can look for the 
top IPs without worrying as much about the directionality.

Technique: Multi-Value Fields
When Two (or more fields) Become One

sourcetype=ngfw
| fields severity src_ip dest_ip src_translated_ip
dest_translated_ip

| eval ip = mvappend(src_ip, dest_ip, 
src_translated, dest_translated_ip

| stats max(severity) count by ip

Here are the fiels that ultimately I care about

Conditional One: Outgoing Traffic

Conditional Two: Incoming Traffic

Conditional Three: Internal Traffic

Default (1=1): Whatever Else



▶ This is general to working with eval, but I find it comes up often in the context of 
multi-value fields. 

▶ Whenever there is the possibility that you might have a null value, make sure to 
coalesce it to something non-null, otherwise it could break everything.

▶ BAD: | eval description = "… Second Username (if present): " . mvindex(users, 1,1)
▶ GOOD: | eval description = ".. Second Username (if present): " . coalesce(mvindex(users, 1, 1), "N/A")

Technique: Multi-Value Fields
Warning: Null Fields, the importance of coalesce



▶ Remember that as you build out a Splunk search each command sends results to 
the next, but all any search command takes as input is a series of fields. Even 
many intermediate searchers don’t take advantage of this capability! 

▶ "I would like to track how many events occur per day per user, and then find 
anomalies in that daily trend."

Technique: Stats on Stats
Background and Challenges



▶ We leverage the first stats to grab per day elements, and then the second stats to 
aggregate and analyze trends. 

Technique: Stats on Stats

tag=authentication

| bucket _time span=1d
| stats dc(dest) as count by user, _time

| stats count as num_data_samples
max(eval(if(_time >= relative_time(now(), 

"-1d@d"), count,null))) as count
avg(eval(if(_time<relative_time(now(),

"-1d@d"), count,null))) as avg
stdev(eval(if(_time<relative_time(now(),

"-1d@d"), count,null))) as stdev
by user

Start with whatever base search you want

The first stats will pull the unique number of 
destinations per user per day

Now our second stats will calculate the last day’s 
results, the average, and the stdev. 



▶ My first smart phone was a Samsung BlackJack. I returned in 30 days in and 
bought a first gen 2G iPhone. They both had maps, they both had mobile web, 
but the iPhone didn’t suck to use.

▶ You want results to stand on their own, and not be disregarded by a bad UI. For 
that, always format searches cleanly. This helps make searches actionable, and 
reduces the odds that important results will be overlooked.

▶ Avoid printing worthless information
▶ Always provide a drilldown capability.

Technique: Formatting a Table
Background and Challenges



▶ Use convert, eval, and table to clean up your output

Technique: Formatting a Table
Format within the SPL

tag=authentication
| stats earliest(_time) as earliest 

latest(_time) as latest 
count
by user, dest

| where earliest >= relative_time(now(), "-1d@d")

| convert ctime(earliest) ctime(latest) 
timeformat="%m/%d/%Y %H:%M:%S"

| eval dest=replace(dest, ".contoso.com", "")

| table user dest count earliest latest

Build whatever detection you are looking for, in this 
case looking for people logging to servers for the first 

time in the last day. For an example similar to this, 
check out the "Lookup Caching" technique, which 

scales really well. 

Definitely don’t print an epoch timestamp ever. But 
ever for normal timestamps, make sure that they 

match each other and what analysts are expecting. 
They have to get it *really* fast, so get in the habit

Maybe you have unnecessary info? Format it.

Then table it with the fields in a sensible order



▶ Sometimes you have no clean drilldown capability, e.g., in an email alert. Even in 
that scenario, give a search string that can be run.

Technique: Formatting a Table
Drilldown In the Worst Scenario

tag=authentication
| stats earliest(_time) as earliest latest(_time) as 
latest count values(sourcetype) as sourcetypes
values(indexes) as indexes by user, dest
| where earliest >= relative_time(now(), "-1d@d")
| eval drilldown= "index=" . mvjoin(indexes, " OR 
index=") . " sourcetype=" . mvjoin(sourcetypes, "
OR sourcetype=") . " user=" . user . " dest=" . 
dest . " earliest=" . earliest . " latest=" . latest
| convert ctime(earliest) ctime(latest) 

timeformat="%m/%d/%Y %H:%M:%S"
| eval dest=replace(dest, ".contoso.com", "")
| table user dest count earliest latest drilldown

There’s not a ton of complexity here - we’re just 
composing a big string that someone could copy-

paste. Not the mvjoin to handle many different 
potential sourcetypes or indexes, though.

In your final table, you can include the drilldown but 
exclude the ugly other fields that it is composed of. 
This lets analysts just copy-paste, as an item of last 

resort. 

Most of this search was already covered - I’ve 
grayed out those parts for clarity. 

We’ve now added sourcetypes and indexes into our 
base search.



▶ Building a dashboard? Print something good, and then drilldown well.

Technique: Formatting a Table

<panel>
<title>Users logging into new servers (with drilldown)</title>
<table>

<search base="the last slide to save space, but add index 
and sourcetype">

<query> | table sourcetype index user dest count 
earliest latest drilldown | sort - count </query>

</search>
<fields>["user", "dest", "count", "earliest","latest"]</fields>
<drilldown>

<link>/app/search/search?q=index=……..</link>
</drilldown>

</table>
</panel>

Here we have a search with a few fields that we want 
to use for drilldown, but don’t want to actually show 

to the analyst.

<fields> controls what is shown. (json format..) 
Specifically, we are not showing the drilldown field

Now we can use the <drilldown> <link> to define the 
actual search. This can be weird if you’re not familiar 
with URL Encoding - it’s easiest to just google it. But 
here we are opening in the search app, search view, 
and passing the query (q=). Then we URL Encode 

the actual fields we want to put in there.
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▶ … or just use ES with 
it’s built-in tables and 
built-in drilldown 
searches… which is 
way way easier

Technique: Formatting a Table
Or just use our out of the box tools..



▶ From conf2016 Security Ninjutsu Part Three, a large customer shared a search 
that looks for scenarios where svchost.exe wasn’t owned by services.exe. Cool 
search, yeah? Those MD5s are known legit svchost.exe versions in their 
environment. But this is going to the SOC, so what did they end with? A table.

sourcetype=Win*Security EventID=4688 BaseFileName="svchost.exe" NOT 
CreatorProcessName="services"
NOT (MD5="54A47F6B5E09A77E61649109C6A08866" OR […])
| sort 0 -_time
| table _time, Computer, SubjectDomainName, SubjectUserName, BaseFileName, 
CommandLine, CompanyName, CreatorProcessName, NewProcessName, 
FileDescription, FileVersion, MD5

Technique: Formatting a Table
Working Example



▶ "There are six different reasons why I might want this to alert, but I don’t want to 
have six different searches!"

▶ "I have too many searches looking at the exact same dataset!"

▶ When we help people consolidate alerts from legacy SIEMs, there are generally 
two different types of consolidations. One is data sources, where our CIM allows 
us to avoid duplicating rules for different data types. The other is that we can 
consolidate rules.

▶ As an example, I looked at one SIEM dataset that had 54 different auth rules, 
where there were 7 different data sources and 8 different logic pieces. Those fit 
easily into just two Splunk searches. 

Technique: Multi-Scenario Alerts
Background and Challenges



▶ If you have something you want to tell analysts, tell them. You can put it in the 
playbook if you know they will always look at the playbook.. Otherwise embed it. 

Technique: Multi-Scenario Alerts
Actual SPL

index=risk earliest=-30d 

| stats values(source) as search_names
sum(risk_score) as thirty_day_risk
sum(eval(if(_time > relative_time(now(), 

"-1d"),risk_score,0))) as one_day_risk
by risk_object

| eval threshold_1day = 500, threshold_30day = 1200 
| eventstats avg(thirty_day_risk) as avg_thirty_day_risk
stdev(thirty_day_risk) as stdev_thirty_day_risk

| where one_day_risk>threshold_1day OR 
thirty_day_risk>threshold_30day OR 
thirty_day_risk>

(avg_thirty_day_risk + 3 * stdev_thirty_day_risk)  

Using stats + eval, we can pull out many different 
metrics here. Slicing and dicing by data type or 

particular field value, all very easy.

This examples uses the ES Risk Framework

Here we are using a mix of static thresholds, and 
behavioral thresholds calculated via eventstats. 

Eventstats is also helpful for augmenting analysis, 
just make sure not to exceed its memory limits, as it 

will silently fail. 

Finally we can trigger on multiple different conditions 
with ease.

If you use multi-scenario alerts, make sure you have inline comments that explain the logic. See the next section!



▶ A word of warning here: I love multi-scenario alerts, because I am an SPL nerd. 
Most seasoned PS folks will probably tell you to avoid them, because often each 
alert ties to a different playbook an analyst would have to pursue. Or worse, an 
analyst would look at the alert and not really know what it means (emphasis: 
inline comments is the next section). Or even, it can allow you to create hundreds 
of effective rules, which we know often leads to bad security practices.

▶ There’s fairly broad agreement on the risk example, because it is functionally 
doing something pretty straightforward (looking at risk indicators) and just tries to 
account for quick bursts, but also slow and low activity. 

▶ Just be wary when creating these that you don’t allow your newfound power to 
create an unhappy SOC. 

Technique: Multi-Scenario Alerts
How complex is too complex?



▶ It’s very easy to build advanced logic in correlation searches that are difficult for 
an analyst to quickly ascertain the meaning of. This results in comments like "I 
don’t know what to do with this" or "this is not actionable."

▶ Scenario One:
• It’s very easy in Splunk to combine many different searches into one, but then analysts don’t 

know why it’s actually alerting.
• For example, in analyzing the risk framework, we can alert on slow and low, or short term burst 

activity, or do behavioral detections all in one search. But you need to tell the analyst what to 
look at.

▶ Scenario Two:
• There can be some information that you would expect to be there, but maybe it’s just not. Tell 

the analyst so they don’t boggle.

Technique: Inline Comments
Background and Challenges



▶ If you have something you want to tell analysts, tell them. You can put it in the 
playbook if you know they will always look at the playbook.. Otherwise embed it. 

Technique: In Line Comments
Simple Comments

[... base search here …]

| eval "Remote Source Address"="It would sure 
be nice if the F5 told us where connections were 
coming from"

| rename dest_ip as "Local Destination Address"
user as User

| table _time "* Address" Sourcetype

Clue Analysts into what’s going on here, so they 
know what to look for, if you cannot provide it.

*Note* -- the ES Adaptive Response can help here, 
by adding related search results to your ticket.

Start with whatever base search you want

BTW - rename your fields so that they make sense 
to the analysts. Try to be consistent across your 
searches, but don’t make people divine what you 

mean by "outgoing_ip"

Yeah, of course we finish with a table



▶ If you’re going to put in advanced 
logic, make sure you have advanced 
comments and explanations

Technique: In Line Comments
Advanced Logic begets Advanced Comments

index=risk earliest=-30d | stats values(source) as search_names
sum(risk_score) as thirty_day_risk sum(eval(if(_time > 
relative_time(now(), "-1d"),risk_score,0))) as one_day_risk by 
risk_object | eval threshold_1day = 500, threshold_30day = 1200 | 
eventstats avg(thirty_day_risk) as avg_thirty_day_risk
stdev(thirty_day_risk) as stdev_thirty_day_risk

| where one_day_risk>threshold_1day OR 
thirty_day_risk>threshold_30day OR 
thirty_day_risk>(avg_thirty_day_risk + 3 * stdev_thirty_day_risk)  

| eval risk_score_reason = case(one_day_risk>threshold_1day, "One 
Day Risk Score above " . threshold_1day, 
thirty_day_risk>threshold_30day . " on " . strftime(now(), "%m-%d-
%Y"), "Thirty Day Risk Score above " . threshold_30day, 1=1, "Thirty 
Day Risk Score more than three standard deviations above normal 
(>" . round((avg_thirty_day_risk + 3 * stdev_thirty_day_risk),2) . ")") | 
fields - avg* stdev*

| table risk_object risk_score one_day_risk thirty_day_risk
risk_score_reason

We have three potential reasons why this alert would 
fire - one day risk, 30 day risk, or a behavioral risk. 
(Note: I think this behavioral risk is pretty weak..)

We had three conditions in the where, so we have 3 
conditions to cover in the comment. Note that the 
conditionals are the same in the case statements. 

Fun fact: when combining searches with this method, 
the comment block will usually be way way longer.. 

Yeah, of course we finish with a table



▶ You’re familiar with tl;dr, right? Hard learned lessons: 
▶ If your comment is more than a few words, people aren’t going to read it. 
▶ If you have 3 different potential comments, make them visually very different 

(e.g., don’t start each with "This alerts because") so that people will notice the 
unfamiliar format at a glance.

Technique: In Line Comments
Wait, *you* are telling me to keep my comments short? Have you looked at the 

deck you’re writing right now? I have a mirror for you! 



▶ "I like this correlation search but it generates too much noise"
▶ "I like that you tuned this correlation search, but wow is it ever long!"
▶ "I like that you tuned this correlation search, but you missed XYZ"

▶ Tuning searches is inevitable for correlation searches. Let’s look at techniques for 
doing this scalably.

Technique: Tuning
Background and Challenges



▶ By far, the easiest way to do tuning is to add the items inline. But beware, you 
can end up with super, super long searches. 

Technique: Tuning
Just toss that inline!

sourcetype=Win*Security EventID=4688 
BaseFileName="svchost.exe" NOT 
CreatorProcessName="services"

NOT (MD5="54A47F6B5E09A77E61649109C6A08866"
OR […])

| sort 0 -_time

| table _time, Computer, SubjectDomainName, 
SubjectUserName, BaseFileName, CommandLine, 
CompanyName, CreatorProcessName, 
NewProcessName, FileDescription, FileVersion, MD5

That’s Tuning!

That’s *also* Tuning!



▶ One place to look, can be applied to multiple different searches, and makes for 
short non-scary searches!

Technique: Tuning
Make a Macro

In macro config (macros.conf, or Web UI):
[standard_host_exclusions]
NOT (host=vuln-scan*.mycompany.local OR 
host=*.old-env.mycompany.local OR {…} )

In Correlation Search:
index=authentication `standard_host_exclusions`
| rest of your correlation search

Define your exclusions in macros.conf or in 
Settings -> Advanced Search -> Macros

Add your macro into the correlation search



▶ Define a lookup table with the fields you care about, then bring it into the search. 
The SOC can then access that lookup table and update it. 

Technique: Tuning
Build a Lookup Table that the SOC can access

Create a lookup field with whatever field you care 
about, e.g., standard_host_exclusions.csv:
host
vuln-scan*.mycompany.local
*.old-env.mycompany.local

Then bring that into your correlation search:
tag=authentication 

[.  | inputlookup standard_host_exclusions.csv
| stats values(host) as search 
| eval search="NOT (host=" . mvjoin(host, " OR 

host=") . ")"
]

This allows you to take those hosts, and then craft a 
NOT (…) string like in the macro example that is 

generated the moment that you click "search" with 
almost no performance impact. 

P.S. You can put that in a Macro too!

Did you know that a subsearch that returns just the 
field "search" is interpreted literally as a search 
string? Check out more details in the Subsearch

technique

This is just a simple CSV. You can even allow the 
SOC to update this via the lookup editor app (or the 

built in capability in Enterprise Security)! 



▶ If you remember only one thing in this entire presentation, remember this.
Stats + Eval is the most powerful tool for Splunk Correlation Searches

Stats + Eval = BEAST MODE
▶ "I want to alert if we see a set of events across 7 different sourcetypes in a 

particular order"
▶ "I want to alert if we see a particular error coming from the web server right after 

a user submits a particular request."
▶ "I want to run a search that tracks multiple different thresholds based on different 

time windows to find slow and low activity while also finding bursts oh and I also 
want to implement a specific piece of custom logic."

Technique: stats + eval
Background and Challenges



▶ You can input a lookup, then output a lookup, and then continue on your search. 
Run this search every day/hour, and take advantage of a 90 day baseline!

Technique: stats + eval

tag=authentication
| stats count(eval(action="success")) as successes 

count(eval(action="failure")) as failures 

values(eval(if(action="success",user,null))) as 
"Successful Users"

count(eval(if(searchmatch("example of log 
message"), 1, null))) as "example hits"

count(eval(if(match(email, 
"\@buttercupgames\.com"),1,null))) as 
buttercup_emails

by user

Using stats + eval allows you to create columns 
based on individual items.

Start with whatever base search you want

You can even use if statements, and use null for 
items you don’t want to include.

Searchmatch even allows you to execute a raw 
search within the eval!

I’m also fond of regex matching inside of stats, 
‘cause you can just do that!



▶ Joins are really computationally expensive, and limited
▶ Only if you have one *very* rare term search and one dense search, are subsearches a great approach. (Best if they’re 

not IP based, because IP searches are challenging)
▶ Incorrect (10k results!): tag=malware action=allow | stats count as infections by host | join host [search index=proxy 

category=uncategorized | stats count as hits by host]
▶ Maybe Incorrect (400 seconds, 10k malware hits): [search tag=malware action=allowed | dedup dest | rename dest as 

src | table src]  (tag=proxy category=uncategorized)   | stats count(eval(tag="malware")) as NumMalwareHits
count(eval(tag="proxy")) as NumProxyHits by src

▶ Better (72 seconds): (tag=malware action=allowed) OR (tag=proxy category=uncategorized) | eval
mydest=if(tag="malware", dest, src) | stats count(eval(tag="malware")) as malware count(eval(tag="proxy")) as proxy by 
mydest | where malware>0 AND proxy>0

▶ Best (14 seconds): | tstats prestats=t summariesonly=t count(Malware_Attacks.src) as malwarehits from 
datamodel=Malware where Malware_Attacks.action=allowed groupby Malware_Attacks.src | tstats prestats=t append=t 
summariesonly=t count(web.src) as webhits from datamodel=Web where web.http_user_agent="shockwave flash"
groupby web.src | rename web.src as src Malware_Attacks.src as src | stats count(Malware_Attacks.src) as malwarehits
count(web.src) as webhits by src| where malwarehits > 0 AND webhits > 0

Technique: stats + eval
Example from .conf 2015 

tstats is awesome! Check out the tstats section of this presentation



▶ "I think this is generally low severity, unless it happens for John Smith or his team 
of Research Scientists, in which case OH NO!"

▶ "We can usually ignore this assuming it’s not happening to our VIPs"

▶ This comes up most frequently for ES customers, but can be applied to anyone 
else, depending on how you handle your upstream ticketing.

▶ Inside of ES, we have default severity, and default risk indicators. In addition, 
Urgency is automatically calculated based on the combination of severity and the 
priority of the asset or identity involved. But all of those can be overridden from 
within the search, to let you prioritize (or de-prioritize) any particular events or 
users.

Technique: Override Urgency/Severity/Risk
Background and Challenges



▶ If you include the fields urgency, severity, risk_object, risk_object_type, or 
risk_score, it will override whatever default values exist. 

Technique: Override Urgency/Severity/Risk

tag=authentication
| filter_for_bad_stuff

| lookup user org_risk OUTPUT NumRisk

| eventstats avg(NumRisk) as AvgNumRisk

| eval risk_score=round(40*(NumRisk / AvgNumRisk), 0)
| eval risk_object=if(user="administrator", "John Smith")
| eval risk_object_type="user"
| eval severity=if(risk_score>120, "critical", "medium")

Use lookup, or anything else necessary to add 
context to the event.

In this case, the lookup gives us a numeric risk 
coefficient (probably 1-5). Because we want to 

hardcode very little, we calculate the avg coefficient.

Run your detection logic.

Finally, we can hardcode the risk_score, risk_object, 
risk_object_type, and severity. You can technically 
hardcode the urgency as well, though usually that 

shouldn’t be necessary unless you haven’t 
configured your assets correctly.



▶ "I want to conquer the world with Splunk Apps"

Technique: Common Apps
Background and Challenges



Technique: Common Apps

https://splunkbase.splunk.com/app/3435/
Splunk Security Essentials

Identify bad guys in your environment:
ü 50+ use cases common in UEBA products, 

all free on Splunk Enterprise
ü Target external attackers and insider threat
ü Scales from small to massive companies
ü Save from the app, send results to ES/UBA

The most widely deployed UEBA product in the 
market is Splunk Enterprise, but no one knows it.

Solve use cases you can today for free, then 
use Splunk UBA for advanced ML detection.



▶ DNS exfil detection - tricks of the trade
▶ parse URLs & complicated TLDs (Top Level Domain)
▶ calculate Shannon Entropy
▶ List of provided lookups

• ut_parse_simple(url)
• ut_parse(url, list) or ut_parse_extended(url, list) 

• ut_shannon(word)

• ut_countset(word, set)

• ut_suites(word, sets)
• ut_meaning(word)

• ut_bayesian(word)

• ut_levenshtein(word1, word2)

Technique: Common Apps

https://splunkbase.splunk.com/app/2734/
URL Toolbox



▶ Checking Randomness via Entropy. Random characters in filenames or domain 
names can indicate suspicious behavior! It can also create false positives (CDNs, 
etc.)
• sourcetype=win*security EventCode=4688 Users New_Process_Name=*\Users\* | stats  count 

by New_Process_Name,host | lookup ut_shannon_lookup word as New_Process_Name | 
rename ut_shannon as "Shannon Entropy Score" New_Process_Name as Process,host as 
Endpoint 

▶ Checking for similar strings can be useful particularly to find email phishing. 
Levenshtein gives us the distance between two strings. 
• sourcetype=proxy | stats count by domain | eval list="mozilla", mydomain="mycompany.com" | 

`ut_parse_extended(domain, list)` | lookup ut_levenshtein_lookup word1 as ut_domain word2 
as mydomain | where ut_levenshtein < 3 

• Look for the Levenshtein-Damerau algorithm in JellyFisher (next slide) that better supports out-
of-order characters

Technique: Common Apps
Common URL Toolbox Usages



▶ Took the url parsing capabilities in 
URL Toolbox and rewrote them so 
that they are lightning fast.

▶ Lacks any of the statistical 
capabilities, but parsers very fast

▶ Separate from "URL Parser" (with a 
space) which is older and doesn’t 
use new Splunk capabilities

▶ https://splunkbase.splunk.com/app/3396

▶ Took the statistical capabilities from 
URL Toolbox and built them brand 
new with a super fast library

▶ Lots of new capabilities, such as 
phonetic matching (kirt vs curt)

▶ Brand new as of Aug 2017, uses the 
JellyFish library

▶ https://splunkbase.splunk.com/app/3626

Technique: Common Apps
URL Toolbox Split into URL Parser and Jellyfisher



▶ Splunk Security Essentials demonstrates both Entropy and Levenshtein via URL 
Toolbox

1. Download the app off Splunkbase
2. Open: Emails with Lookalike Domains
3. This use case supports multiple 

different internal domains
4. Enjoy that you do not have to write 

this SPL!

Technique: Common Apps
Working Example



▶ "When I look at my alerts, I know which people I really need to care about first -
now why can’t my Splunk alerts show the same thing?"

▶ Splunk Enterprise Security has a couple of specific risk mechanisms out of the 
box:
• Asset / Identity Priority - this is closest to the need described above. If a medium severity rule 

fires on a PCI Database Server and the front desk Kiosk at the same time, one will show as low 
risk, the other as critical if you’ve defined one as a critical priority asset and the other as low. 
The same thing works for users.

• Risk Framework - this allows you to assign a numeric risk score to each correlation alert, and 
then track the amount of risk incurred by each user, system, virus signature, etc. etc. You can 
even create notable events from this data!

▶ Some customers don’t have ES (yet!) and but still need to prioritize events.

Technique: Risk
Background and Challenges

Disclaimer: This use case was covered in 
.conf2015 Security Ninjutsu Part Two



▶ You hopefully know the high risk, high exposure users in your organization.
• Sys Admins, Executives, Contractors
• First 3 months of employment, last 3 months of employment
• Have accessed a particular file share

▶ Sources:
• AD Group Membership
• AD Title
• HRIS Employment Status
• Audit Logs

▶ Implementation. Run a periodic search that:
• Refreshes AD (or consolidates multiple ADs, etc.)
• Initializes risk=1 for all users
• Does a ton of evals to apply your logic, adding to risk
• Outputs to a new lookup

Technique: Risk
Requirements for a Numeric Risk Register



▶ Apply our business logic to figure out how risky each person is in our org.

Technique: Risk
Build Your Risk Lookup

| inputlookup LDAPSearch
| eval risk = 1

| eval risk = case(NumWhoReportIn>100, 
risk+10, risk)
| eval risk = case(like(Groups, 
"%OU=Groups,OU=IT Security,%"), risk + 10, 
risk)
| eval risk = case(like(title, "VP %"), risk+10, 
like(title, "Chief %"), risk+100, 1=1, risk)

| fields risk sAMAccountName
| outputlookup RiskPerUser

Then apply your business logic to figure out what risk 
potential should be applied to each person.

To consider ways to define risk, think of questions 
like "how would I feel if someone from a particular 

department had a dispute and left the company" and 
then "why?"

Larger organizations may have a more mature 
process here

Start by initializing Risk for all your users

Finally, put this risk score into a lookup



▶ Now that we have a risk lookup, we can apply it to any search

Technique: Risk
Use Your New Risk Lookup

[… insert your Correlation Search …]

| stats count by user

| lookup RiskPerUser sAMAccountName as user

| eval AggRisk = risk * count

| eval DescriptiveRisk = case(AggRisk > 100, 
"very high", AggRisk>30, "medium", AggRisk>5, 
"low", 1=1, "very low")

Apply this generically to any correlation search with a 
user field

It’s often useful to generalize risk as "low" "medium"
"high" as it can be more consumable

Sum up the number of events per user. (You can 
also modify this with severity, risk score, etc.)

Use lookup to add the risk score

If there are multiple offenses, increase risk 
accordingly. Note that you may want to be careful 
with actual multiplication as it can create too much 
noise. See Time Series * First Time Seen Detection



▶ Suppose you have this search down exactly how you want it, and now you want 
to apply it to all your searches, you can easily do this via a macro.

▶ Then your search becomes:
[… insert your Correlation Search …]
| `calculate_risk(user)`

▶ If you are using ES, you can even build this into the ES Risk Framework by 
editing the [risk] stanza of:
$SPLUNK_HOME/etc/apps/SA-ThreatIntelligence/default/alert_actions.conf

▶ ES Users should also see "Technique: Override Urgency/Severity/Risk" in this 
doc

Technique: Risk
Add this into alert_actions.conf



▶ "I want to run subsearches that return more than 10k results!"
▶ "I want to run subsearches that last longer than 60 seconds!"
▶ "Boy do I like to build my mission-critical detections using this subsearch that 

returns all of our proxy logs! It even runs way faster as a subsearch!"
• Hint: that one is a bad one to say!

▶ Subsearches are very powerful! They can help you build out all kinds of great 
filters! I assume anyone getting this far probably already knows about 
subsearches.

▶ Unfortunately, some don’t know that subsearches automatically finalize after 60 
seconds (so as far as it gets in 60 seconds is as far as it gets) and can only 
return a maximum of 10k events. There’s solutions (ish) though!

Technique: Subsearches
Background and Challenges



▶ If you have more than 10k results (say you have 15k domains you want to search 
for) you can use the below. Just keep in mind that there are upper limits -
eventually the main search will slow to the point of being unusable if you get to 
30k, 40k, fields. 

▶ The secret: if the only value you return from the subsearch is the field "search"
then it will be interpreted literally. 

Technique: Subsearches
Returning more than 10k results

index=win*security 
[ | inputlookup inscope_ad_users.csv
| stats values(sAMAccountName) as search
| eval search=

"(user=" . mvjoin(search, " OR user=") . ")"
]

Start with our base dataset, in need of a filter

And now we’re back in our search, just with a GIANT 
list of users

We now have a list of users

We now have a GIANT single multi-value field

mvjoin now gives us a GIANT single-value field



▶ Unfortunately there’s no magic here, beyond the inherent magic of acceleration.
▶ There *is* a change you can make to limits.conf, but I’ve virtually never heard of 

anyone making that change because it is global across the entire server/cluster.
▶ So instead, swing down to tstats in the NINJA section, and follow the link to get 

perspectives on how to approach acceleration!

Technique: Subsearches
Taking more than 60 seconds



▶ For a concrete working example, check out the examples under "tstats," and 
under "stats + eval"

▶ Notably the example under stats+eval took much much longer than using an 
"OR" (or multisearch! "Technique: Advanced Commands", towards the end). 

▶ I once did an end-to-end test of performance while looking for threat intel 
indicators. I compared the performance of doing an [|inputlookup] subsearch to 
add search criteria, against just looking for all the IPs and then doing a lookup. At 
15 indicators, the subsearch was so much faster it was almost silly. At tens of 
thousands of indicators, the lookup option is faster.

Technique: Subsearches
Working Example
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▶ "I want to look at statistics over one hundred or more days of authentication 
activity, but the search takes too long to complete"

▶ "I am analyzing a dataset that requires stats on stats [see this technique 
elsewhere] but the first stats generates millions of rows and the search is 
incredibly slow."

▶ "I have a very slow search using transaction [or threat intel, or etc] and don’t want 
the analysts to have to wait for it, can I just store the results of it?"

▶ "I need to expose this data to analysts, but they can’t see the actual usernames!"
▶ We will look at each of these scenarios in more depth to explain why Summary 

Indexing helps here.

Technique: Summary Indexing
Background and Challenges



▶ Take a search, any search, and then index the result, all without license cost!

Technique: Summary Indexing
Essential Data Aggregation

tag=authentication

| stats count as num_auths
dc(dest) as num_dests
values(dest) as dest_values
values(Account_Domain) as Domains 
values(EventCode) as EventCode
by user, 

Logon_Type, 
action

| collect index=authentication_summaries

Here we are using stats to pull a number of 
aggregate metrics. The best part about Summary 
Indexing is that almost anything you put in front of 

the "by" clause is free from a performance 
perspective. More on this in a moment...  

Start with whatever base search you want

Here’s the high risk part - whatever we split by 
increases the number of records (and amount of disk 

space) exponentially. More on this in a moment…

Now we just pull this data in via collect. What this 
actually does is write it to a special file in 

$SPLUNK_HOME/var/spool/splunk



▶ The example just given with authentication data is a classic illustration of this technique. Suppose 
you want to analyze a few metrics around Windows Auth data to do behavioral searching on 
users logging into more searches than normal, but you have 4 TB of Windows Security logs per 
day, and that would be 120 TB with a 30 day baseline.

▶ You can use summary indexing to record just the aggregate metrics every day. Suppose 
somewhat arbitrarily that even including the hostnames, each event was 1 KB. Even in a large org 
with 300k employees that would consume just 300 MB of disk space per day, and a 30 day 
baseline search would only have to search 9 GB of data, a reduction of 13,333x. 

▶ We see Summary Indexing being used extensively for scenarios you don’t require the full event 
fidelity. For example, if you’re indexing huge volumes of Stream, Flow or DNS logs, but 
sometimes all you need to know if "did these two hosts communicate with each other, and what 
day/hour" you can summarize the data dramatically.

Technique: Summary Indexing
Summary Indexing for Data Summarization



▶ As described elsewhere in this presentation, stats on stats is an incredibly powerful technique! The use case we just covered is one example - we would first run 
stats to prepare our dataset, and then run stats again to actually detect outliers:
| bucket _time span=1d | stats {metrics} by user, _time | stats {outlier} by user

▶ There’s an innate performance challenge in that, though. Suppose a company with 30k users where you want to detect a change in the number of servers logged 
into per day, with a 3 month baseline. That would be 90k users * 5 days per week * 14 weeks. That would be 6.3 million rows to keep in memory! 

▶ Splunk has an inherent limit in the amount of rows that can be kept in memory. Above that limit it takes partial result sets and writes them to disk. {This may not be 
100% accurate for the internals, but it’s generally right:} So maybe you’d get 1M results in memory, and then it would gzip those, and write them to disk. Then it 
would pull the next 1M results, gzip those and write them to disk, etc. Once it has all the groups of results, it would then read sections of the data back in, 
decompress them, group them, compress them, and re-write them out to disk, until eventually it is complete. 

▶ That means that a search for 1M row may complete in 4 minutes but a search for 2M rows could complete in 16 minutes. Because the limit here is in MB used, it’s 
not as clear as saying "keep it below 1M rows" but in my experience the slowdown occurs somewhere between 800k and 2M rows depending on what columns you 
have. Also notably, a 4 minute search taking 16 minutes once per day in the middle of the night isn’t actually a problem most of the time, so violating the theshold a 
little bit is fine. But a 3M row search could then take 30 minutes, 4M row 50 minutes, and eventually your pain becomes great.

▶ Why so much background discussion? Summary Indexing solves this problem in a lovely fashion. Run the daily aggregation search, where in any day you will only 
have 90k records (easy). Then when you run the behavioral search, you are looking at raw logs in your summary index and you again only have to track 90k rows. 

Technique: Summary Indexing
Summary Indexing for Stats on Stats

Without Summary Indexing

~1.6 Billion
Raw Logs

6.3 Million
Stats Rows

90 Thousand
Stats Rows

With Summary Indexing

6.3 Million
Raw Logs

90 Thousand
Stats Rows

~23 Thousand
Raw Logs Daily

90 Thousand
Stats Rows Daily



▶ One of my favorite use cases for both transaction (covered elsewhere in this 
presentation) and summary indexing is the idea of taking a *very* slow 
transaction search and then outputting the relevant details into a summary index.

▶ For example, Ironport logs are a classic use case for transaction, and if you have 
a 50k employee organization then that search is going to be terribly slow over 
any long period of time, but the SOC will always want to understand email 
records.

▶ | transaction {whatever} | table _time {whatever other fields are relevant to 
understand} | collect index=our_email_logs

▶ Then analysts can just run a quick search of index=our_email_logs to get 
individual pieces. You can still retain the raw data in your Ironport indexes for 
anything you didn’t capture in the summary index.

Technique: Summary Indexing
Making Slow Searches Fast



▶ This is generally only reluctantly recommended because of the performance and disk space 
limitations, but I did want to include it because we are talking about Summary Indexing.

▶ If you have a data source that you want to expose to a group in your org, but who aren’t permitted 
to see all data (such as employee names), you can summary index your data into a new index.

▶ index=sensitive | rex mode=sed "s/employee=\"[^\"]*/employee=\"masked" | collect index=masked
▶ That said, be cautious of trying to do this at really high scale (e.g., limit can vary a lot based on 

your system, but maybe 150 GB/day?)

Technique: Summary Indexing
Summary Indexing for Anonymization



▶ A lot of mechanics in Splunk are dependent on cardinality, which is a measure of how much variability there is in fields. E.g., if you have 30k 
users and 50k endpoints, | stats … by user would have a maximum of 30k rows, but | stats … by user, dest could theoretically reach 1.5 
billion. If you did | stats … by user, dest, EventCode you might end up in the tens of billions.

▶ This has two implications when it comes to summary indexing. One is why summary indexing helps when doing stats on stats (see a couple 
of slides ago). The other bigger is when you are choosing what you want to put in your summary index. 

▶ My general recommendation is to put any numbers you might ever need before the by in your stats. For example, when analyzing 
authentication data, why not track the number of event codes, number of servers, number of logon types, number of Kerberos errors, etc. If I 
have 30k users and am tracking 7 different metrics, and add an 8th, I see an incremental increase in disk space used, but basically that’s it. 
If I have short field names (remember that we write those to disk, so you pay your storage vendor by the byte), it’s almost nothing. 

▶ The flip side, is that I recommend not putting anything after the by clause unless you really need to. Adding "by EventCode" to the end of a 
Windows Authentication search will increase the number of rows (and amount of disk space by between 6 and 15x depending on how your 
windows logging is set up.

▶ I just ran a quick test looking at PAN logs for one hour. In the first example, I don’t include app at all. In the second, I include the list of apps. 
In the third, I split by app. 

Technique: Summary Indexing
A Note on Cardinality

KB # Rows Search

3,160 17,584 index=pan_logs | stats count dc(dest) as NumDests sum(bytes_*) as sum_bytes_* avg(bytes_*) as avg_bytes_* dc(dest_port) as 
numDestPorts by src_ip

3,776
+ 616

17,584 index=pan_logs | stats count dc(dest) as NumDests sum(bytes_*) as sum_bytes_* avg(bytes_*) as avg_bytes_* dc(dest_port) as 
numDestPorts values(app) as apps by src_ip

11,700
+ 8,540

63.239 index=pan_logs | stats count dc(dest) as NumDests sum(bytes_*) as sum_bytes_* avg(bytes_*) as avg_bytes_* dc(dest_port) as 
numDestPorts by src_ip app



▶ If you have heard of the si commands, my recommendation is that you don’t ever 
use the si commands. They’re comparably rigid and difficult to understand.

▶ If you want to pursue this more, I would recommend the Splunk data Science 
EDU class.

Technique: Summary Indexing
What about si commands?



▶ One final concept here. The first time you create a summary index, you might put 
it in a dedicated index, or just use index=summary that ships by default with 
Splunk.

▶ When you have 25 different summaries, you will need some way to distinguish 
them. When you save a summary index via the WebUI, it will ask you if you want 
to define a marker, which is a kvpair that gets added into the raw event.

▶ I personally prefer to control my destiny and use the | collect command rather 
than the WebUI (though probably I should switch to the WebUI). I implement a 
marker by adding a new field before the | collect.

▶ index=* | stats … | eval marker="BaselineAuthData" | collect index=xyz
▶ When defining a marker, you want a medium-long string so that we can use 

bloom filters and our indexing, but avoid punctuation.

Technique: Summary Indexing
Multiple different summaries in a single index



▶ While we’re here - skipped searches are a common problem on heavily loaded 
Splunk environments. You want to avoid skipped searches as much as possible, 
but you can work around that by telling Splunk to use continuous scheduling.

▶ This setting is in savedsearches.conf, and is called realtime_schedule. (Note, 
because we want to make this as confusing as possible, a real-time schedule is 
not the real thing as a real-time search. I know, I know.) 

▶ Realtime_schedule defines what happens with a search job is skipped. Either:
• You skip that time range and move on (bad for summary indexing, and the default)
• You go wait until you can run for that time range, introducing lag.

▶ You want the latter (and also to minimize skipped searches by not overloading 
your Splunk environment).

Technique: Summary Indexing
No Skipped Searches



▶ Splunk is a time oriented product, but sometimes we can build better detections 
with a non-time oriented state store

▶ "I only want to alert on this if a host has been online for at least a month"
▶ "I only want to alert if this is the 5th time this has happened in the past month"
▶ Splunk Security Essentials Use Case:

• Alert the first time something occurs for any host with a baseline of at least 7 days, and 
remember the last 90 days.

• Do this without searching over 90 days every time.

Technique: Lookup Caching
Background and Challenges



▶ You can input a lookup, then output a lookup, and then continue on your search. 
Run this search every day/hour, and take advantage of a 90 day baseline!

Technique: Lookup Caching

tag=authentication

| stats earliest(_time) as earliest 
latest(_time) as latest 
by user, dest

| inputlookup append=t login_tracker.csv

| stats min(earliest) as earliest 
max(latest) as latest 
by user, dest

| where latest > relative_time(now(), "-90d")
| outputlookup sample_cache_group.csv
| where earliest >= relative_time(now(), "-1d@d")

Eventually summarize to a subset of fields that you 
will be analyzing. Because we want to control the 
size of the lookup, this should usually be a small 

number of fields. (More on this next)

Start with whatever base search you want

*Add* our existing cache with the append=t trigger

Now we can recompute our earliest and latest. The 
first time was just for our search duration (last 

day/hour/etc). Now it has the baseline data too.

Now this search is more up to date than our lookup. 
Update the lookup, and optionally filter out useless 

data to manage the overall lookup size.

Finally you can continue with your actual detection



▶ Pretty big is the general answer. In my head, I try to keep these lookups less than 
800 MB, but it can vary depending on how often you run the search itself (e.g., a 
search every 10 min should be smaller, because otherwise the search won’t 
complete in time.

▶ The biggest limitation is around disk space and search completion time. If you 
have 10GB available, don’t create big lookups. If you have to read in 8M rows 
each time the search runs, you won’t be able to run it that often.

▶ Concrete example: first logon by server in a shop with 300k users.
• Each row: 2 x 10 byte timestamp, username avg 15 bytes, hostname avg 40 bytes = 75 bytes
• Suppose each user connects to 40 core servers, with 10 random servers per week
• For each user, that would be 170 servers for a 3 month baseline.
• 170 servers * 300,000 users * 75 bytes = 3.5 GB - very big! Maybe just track interactive logins.

Technique: Lookup Caching
How big can your lookup be?



▶ I asked around a bunch when building this technique into Splunk Security 
Essentials, and basically the answer was "eh, neither is really better."

▶ Reasons:
• Because we are writing out the entire list every time (| outputlookup uses append=f) we don’t 

get to take advantage of kvstore incremental update
• Because we aren’t sending to the indexers we don’t have to think about the kvstore replication 

method
• Because we are doing an | inputlookup append=t instead of | lookup we don’t take advantage of 

kvstore’s index capability

▶ My recommendation: Use CSV lookups
• There is no benefit to kvstore, and we all know how to manage and deal with csvs. Just way 

easier.

Technique: Lookup Caching
CSV Lookup or kvstore?



▶ Biggest Risk to this technique: Lookups use up disk space, and by default will be sent to your indexers in search bundles. 
If you talk to any large Splunk admin, they will shout you out the door with the terrors of creating 800 MB lookups that 
break bundle replication. 

▶ Here’s the secret though - this technique doesn’t get any benefit from sending the lookup to the indexers. We aren’t 
filtering out raw results with it, we’re just using it for enrichment on the Search Head. Keep it out of the bundles via 
distsearch.conf. This should be common knowledge among advanced admins.
• https://answers.splunk.com/answers/520843/regex-for-distributed-search-blacklist-not-working.html

• https://docs.splunk.com/Documentation/Splunk/6.6.2/DistSearch/Limittheknowledgebundlesize

▶ Now there’s one unknown still here: With SHC, we do still have to replicate those lookups. We don’t have concrete 
knowledge of where issues lie here, but feedback from our top architects suggest that those limits are way way higher 
than with normal bundle replication. If you have an 800 MB lookup, it’s probably prudent to not re-generate it every 10 
minutes (maybe once per day makes sense? Again, maybe every 10 minutes would be fine though.. We really have no 
data). I’ve yet to hear about anything short of a >50 GB kvstore breaking SHC replication, which would suggest that we 
have high limits

Technique: Lookup Caching
Don’t Big Lookups Hurt Splunk?



▶ This has been figured out in Splunk Security Essentials. 
1. Download the app off Splunkbase
2. Open up a First Seen Detection (e.g., First Time Logon to New Server)
3. Add a lookup in the "Lookup to Cache Results"
4. Read the description
5. Hit the checkbox and OK
6. Click "Show SPL" to see the SPL

Technique: Lookup Caching
Working Example



▶ Many times when we look at building use cases, particularly statistical ones, we 
need to be able to measure the degree to which we have a baseline.

▶ "I built a first time seen behavioral use case, but it’s alerting on brand new 
people!"

▶ "I built a time series analysis behavioral use case, but it’s alerting on someone 
with only 3 days of baseline!"

Technique: Confidence Checking
Background and Challenges



▶ When we do a first time seen detection (see First Time Seen elsewhere in this 
presentation), we often want to build in confidence checking.

Technique: Confidence Checking
First Time Seen Detections

tag=authentication

| eval day=strftime(_time, "%d/%m/%Y")  

| eventstats dc(day) as days_of_baseline by user

| where days_of_baseline > 7

| stats earliest(_time) as earliest latest(_time) as 
latest by user

This eval gives a single value per day. We could | 
bucket _time span=1d, rounding the time down, but 

this lets us keep _time accuracy.

Start with whatever base search you want

eventstats is like stats, but without losing the fidelity 
of the data. This will count up, for each host in the 

dataset, how many days of data there is.

And finally we can continue with our normal first time 
seen use case, confident that we are including items 

that just showed up for the first time.

Now we can use where (or search) to filter for hosts 
where we have enough baseline.



▶ A great question related to first time seen detection confidence, where you can 
specify how many days of baseline you expect to see, is "should I do that?" For 
example, if a new host pops up and starts port scanning your environment, that 
may very well be a malicious device.

▶ Ultimately this depends on what your use case is, and it probably makes sense to 
build out detections specifically targeted to large volumes of new activity. In the 
following "Variations on First Time Seen" use case we record that activity in a 
separate index. While I’m not aware of any customer doing this, you could 
probably build out a detection looking for how many new events there are per 
user against a role, or what have you. 

Technique: Confidence Checking
First Time Seen: Do you really want to be confident?



Check both user and host Tracking new users separately
▶ tag=authentication

| eval day=strftime(_time, "%d/%m/%Y")  
| eventstats dc(day) as days_user by user
| eventstats dc(day) as days_host by host
| where days_user > 7 AND days_host > 7
| stats earliest(_time) as earliest latest(_time) as 
latest by user

▶ This allows you to filter out brand new users who 
log on to many systems, and also brand new 
hosts (e.g., a new cluster member).

▶ tag=authentication
| eval day=strftime(_time, "%d/%m/%Y")  
| eventstats dc(day) as days_user by user
| stats earliest(_time) as earliest latest(_time) as 
latest values(days_user) as days_user by user
| where earliest > relative_time(now(), "-1d@d")
| multireport
[ | where days_user <=7 | collect index=new ]
[ | where days_user > 7 | collect index=old ]

▶ This allows you to record new users, but funnel 
them separately.

Technique: Confidence Checking
Variations on First Seen Detection



▶ The simplest time series analysis is ensuring you have enough days of baseline 
to cause the stdev calculation to be meaningful. 

Technique: Confidence Checking
Time Series Analysis 

tag=authentication
| bucket _time span=1d 
| stats dc(dest) as count by user, _time
| stats count as num_data_samples

max(eval(if(_time >= relative_time(now(), 
"-1d@d"), count,null))) as latest

avg(eval(if(_time<relative_time(now(),
"-1d@d"), count,null))) as avg

stdev(eval(if(_time<relative_time(now(),
"-1d@d"), count,null))) as stdev

by user
| where latest > avg + stdev * 3 AND 

num_data_samples > 7

This is the standard time series behavioral detection 
use case. But note the count as num_data_samples
- because that is coming after the stats … by user 

_time, this will count how many days we end up with, 
for each user. If a user only has a few data points, 

standard deviation is a worthless data point. In some 
scenarios, you would even want to have at least 20 

or 30 data points. 

Start with whatever base search you want

In the same breath that we track the average and 
standard deviations, we can also filter out users that 

don’t have enough days of baseline. 



▶ Based on observed behavior, standard deviation tends to work the best when you have a use case that naturally has 
some deviation. For example, number of logon messages per day, or number of pages printed. Usually those will differ 
from day to day. 

▶ You’re more likely to see what people think of as noise or false positives in datasets with limited variation, such as number
of systems interactively logged into per day (e.g., by sitting at the computer or via remote desktop), or if you have a user 
who just prints one page now and again. Most users just log into one system per day, so their average is 1, and their stdev
is going to be 0 or very close to it, so even setting 6 stdevs above the average might alert for 2 systems.

▶ You might decide that you care if someone who usually just logs into one system logs into a second, even if it’s likely 
benign. But you probably don’t care about someone who usually prints one page, suddenly printing two pages.

▶ There are two approaches I have most frequently seen to manage this:
• Static Filters - don’t alert if the # is less than X, or the # increase is less than X.

• Relative Filters - only alert if this is 2x their average AND 3 stdev above the average.

Technique: Confidence Checking
Time Series Analysis



Adding Static Filters Adding Relative Filters
▶ tag=authentication | bucket _time span=1d 

| stats dc(dest) as count by user, _time
| stats count as num_data_samples

max(eval(if(_time >= relative_time(now(), 
"-1d@d"), count,null))) as latest

avg(eval(if(_time<relative_time(now(),
"-1d@d"), count,null))) as avg

stdev(eval(if(_time<relative_time(now(),
"-1d@d"), count,null))) as stdev

by user
| where latest > avg + stdev * 3 AND 

num_data_samples > 7 AND
latest > 5 AND (latest - avg) > 5

▶ tag=authentication | bucket _time span=1d 
| stats dc(dest) as count by user, _time
| stats count as num_data_samples

max(eval(if(_time >= relative_time(now(), 
"-1d@d"), count,null))) as latest

avg(eval(if(_time<relative_time(now(),
"-1d@d"), count,null))) as avg

stdev(eval(if(_time<relative_time(now(),
"-1d@d"), count,null))) as stdev

by user
| where latest > avg + stdev * 3 AND 

num_data_samples > 7 AND
latest > avg * 2

Technique: Confidence Checking
Variations on Time Series



▶ The simplest time series analysis is ensuring you have enough days of baseline 
to cause the stdev calculation to be meaningful. 

Technique: Confidence Checking
Time Series Analysis Variation: Signal to Noise Ratio

tag=authentication
| bucket _time span=1d 
| stats dc(dest) as count by user, _time
| stats count as num_data_samples

max(eval(if(_time >= relative_time(now(), 
"-1d@d"), count,null))) as latest

avg(eval(if(_time<relative_time(now(),
"-1d@d"), count,null))) as avg

stdev(eval(if(_time<relative_time(now(),
"-1d@d"), count,null))) as stdev

by user
| where latest > avg + stdev * 3 AND 

num_data_samples > 7

This is the standard time series behavioral detection 
use case. But note the count as num_data_samples
- because that is coming after the stats … by user 

_time, this will count how many days we end up with, 
for each user. If a user only has a few data points, 

standard deviation is a worthless data point. In some 
scenarios, you would even want to have at least 20 

or 30 data points. 

Start with whatever base search you want

In the same breath that we track the average and 
standard deviations, we can also filter out users that 

don’t have enough days of baseline. 



▶ One of the biggest inherent challenges of the modern security world is alert 
fatigue. The sheer volume of security alerts that we experience dooms so many 
SOCs, and we evidence of these problems in many breach debriefs.

▶ Fortunately, there are several techniques for dealing with this inside of a Splunk 
world.

Technique: Managing Alert Fatigue
Background and Challenges



▶ If you have low confidence alerts, send them just into the risk index in ES (or 
build your own -- | eval risk_object=src_ip | collect index=risk) and aggregate.

Technique: Managing Alert Fatigue
Using Risk to aggregate alerts

index=risk earliest=-30d | stats values(source) as search_names sum(risk_score) 
as thirty_day_risk sum(eval(if(_time > relative_time(now(), "-1d"),risk_score,0))) as 
one_day_risk by risk_object | eval threshold_1day = 500, threshold_30day = 1200 
| eventstats avg(thirty_day_risk) as avg_thirty_day_risk stdev(thirty_day_risk) as 
stdev_thirty_day_risk

| where one_day_risk>threshold_1day OR thirty_day_risk>threshold_30day OR 
thirty_day_risk>(avg_thirty_day_risk + 3 * stdev_thirty_day_risk)  

| eval risk_score_reason = case(one_day_risk>threshold_1day, "One Day Risk 
Score above " . threshold_1day, thirty_day_risk>threshold_30day . " on " . 
strftime(now(), "%m-%d-%Y"), "Thirty Day Risk Score above " . threshold_30day, 
1=1, "Thirty Day Risk Score more than three standard deviations above normal (>"
. round((avg_thirty_day_risk + 3 * stdev_thirty_day_risk),2) . ")") | fields - avg* 
stdev*

| table risk_object risk_score one_day_risk thirty_day_risk risk_score_reason

See a full description of this search under the "Multi-
Scenario Alerts" and "Inline Comments" sections



▶ Similar to the risk approach, even in your normal ticketing flow you can take high 
priority alerts and bring them to the top of the list by creating meta-notables.

Technique: Managing Alert Fatigue
Using Statistics to Manage Fatigue

tag=ids tag=attack 
| bucket _time span=1d 
| stats count by severity signature dest _time 
| stats sum(count) as count 

avg(count) as avg
stdev(count) as stdev
sum(eval(if(_time > relative_time(now(),  "-1d"), 

count, 0))) as recent_count
min(_time) as earliest 

by severity signature dest
| eventstats avg(avg) as avg_num_per_dest

avg(earliest) as avg_earliest
sum(count) as sig_wide_count
sum(recent_count) as sig_wide_recent_count

by signature
| where NOT (avg_earliest < relative_time(now(), "-1y") AND

sig_wide_recent_count / sig_wide_recent_count < 0.05 AND 
priority <=3) 

Start by building up a set of aggregate statistics for 
our dataset.

Use eventstats to add additional context, in this case 
about the IDS Signature

We now have a large body of fields with relevant 
data about this event. Use | where to apply your logic 

about what you do or don’t want to see. 



▶ Simple Example:
▶ index=notable 

| stats dc(search_name) as NumRules
values(search_name) 

by dest
| where NumRules>2

▶ More Specific Example:
▶ (index=notable Antivirus OR ids) OR 

(index=proxy category="") 
| eval dest=case(index="proxy", src, 
index="notable", dest) 
| stats dc(search_name) as NumRules

count(eval(index="proxy")) as 
NumUncategorizedHits

by dest
| where NumRules>1 AND 

NumUncategorizedHits > 0

Technique: Managing Alert Fatigue
Build Specific Application Logic

▶ Similar to the risk approach, even in your normal ticketing flow you can take high 
priority alerts and bring them to the top of the list by creating meta-notables.



▶ If you have a mundane alert (e.g., low severity IDS alert, AV successful clean, 
etc.), why not increase logging on that host for a while?

▶ With ES, you can use Stream to do network capture, or leverage any other 
adaptive response actions. With or without ES, you can use your EDR solution. 
Many customers leverage the Palo Alto Networks app or expect scripts to add 
suspect hosts to groups that have additional logging. Etc.

▶ Write additional correlation rules based on that increased logging to look for 
higher confidence, higher severity alerts. 

Technique: Managing Alert Fatigue
Increase Logging



▶ With Machine Learning, you can build extremely powerful models and techniques 
for finding outliers programmatically.

▶ Look at Splunk UBA - this is what they do. 
▶ Look at the ML Toolkit App

Technique: Managing Alert Fatigue
Leverage Machine Learning



▶ Being able to group events that are similar is super important.
▶ Transaction has a terrible reputation for being slow, because it is slow. But there 

are scenarios where it is super easy, and we all work in technology because we 
like to go against conventional wisdom, right?
• Use Transaction for very low event volumes, e.g.: sourcetype=win*security super.exe rare.exe

executables.exe | transaction host maxpause=10m maxspan=5h
• Use Transaction asynchronously to populate a summary index, e.g.: sourcetype=ironport OR 

sourcetype=cisco:esa | transaction MID | fields - _raw | fields {…} | collect index=our_email

▶ Transaction doesn’t fail on by the hour borders (| bucket _time span=1h | stats 
whatever by _time)

Technique: Transaction
Background and Challenges



▶ When you can filter your incoming event flow to a low volume, even if transaction 
is 10x slower, who cares?

Technique: Transaction
Transaction for low event volume

sourcetype=win*security EventCode=4688 
[| inputlookup suspicious_processes.csv]

| transaction host
maxpause=10m
maxspan=10h

We know that transaction is slow, so the key here is 
using it for a dataset where you won’t send much 

data to transaction. 

Now we can use transaction!



▶ Sometimes transaction is *way* easier. Like, "mere mortals don’t have the SPL Skill to 
use stats + eventstats + streamstats + whatever magic allows you to see your way to the 
desired result. In this case, embrace the slow. Use transaction asynchronously, and then 
send the results to a summary index. To help avoid skipped searches, use 
realtime_schedule=1 in savedsearches.conf. (Check Summary Indexing in this doc.)

Technique: Transaction
Transaction with Summary Indexing

sourcetype=ironport OR sourcetype=cisco:esa

| transaction MID ICID …
maxpause=5m
maxspan=1h

| table _time mid icid dcid recipient sender…
| collect index=our_email

Ironport logs are not the only good transaction 
example, but they’re certainly the classical example 
of something really hard to do without transaction

Now we can use transaction

Now you can send the completed results into your 
summary indexes. Note that you have to make sure 

you’re not skipping this search.  



▶ Transaction has many options that are often ignored, to the peril of the operator.
▶ Go check out the docs page for Transaction.. I’ll wait:

http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/transaction
▶ See all those maxspan, maxpause, max etc? Those are to control the amount of 

memory used by transaction. Splunk controls how much data can exist 
simultaneously in memory, and when it hits that limit it writes out things to disk.

▶ More memory in use, less speed in search.
▶ If you have a larger search with transaction (e.g., your email logs), never run it 

without maxpause, maxspan controls. 

Technique: Transaction
Speeding up a slow-ish Transaction



▶ In Splunk Security Essentials we have any example using a small volume of logs
1. Download the app off Splunkbase
2. Open up Concentration of Hacker Tools by Filename
3. Click "Show SPL" to see the SPL
▶ This search pulls in only process 

launches for suspicious attacker
tools, and limits to just 5 minutes

▶ If this search is excessively slow,
you either have a very odd network
or are terrifyingly compromised

Technique: Transaction
Working Example



Wed Feb 12 19:48:37 2014 Info: New SMTP ICID 1000000201 interface Data2 (192.0.2.44) address 203.0.113.83 reverse dns host unknown verified no
Wed Feb 12 19:48:37 2014 Info: ICID 1000000201 ACCEPT SG UNKNOWNLIST match sbrs[0.0:10.0] SBRS 5.1
Wed Feb 12 19:48:37 2014 Info: ICID 1000000201 TLS success protocol TLSv1 cipher AES128-SHA
Wed Feb 12 19:48:37 2014 Info: Start MID 500000014 ICID 1000000201
Wed Feb 12 19:48:37 2014 Info: MID 500000014 ICID 1000000201 From: 
Wed Feb 12 19:48:37 2014 Info: MID 500000014 ICID 1000000201 RID 0 To: 
Wed Feb 12 19:48:37 2014 Info: MID 500000014 ICID 1000000201 RID 1 To: 
Wed Feb 12 19:48:38 2014 Info: MID 500000014 Message-ID ''
Wed Feb 12 19:48:38 2014 Info: MID 500000014 Subject 'FW: Some Subject Matter'
Wed Feb 12 19:48:38 2014 Info: MID 500000014 ready 52076 bytes from 
Wed Feb 12 19:48:38 2014 Info: LDAP: Masquerade query Rewrites-Inbound MID 500000014 address bill.jones@example.com to bill.jones@example.com
Wed Feb 12 19:48:38 2014 Info: LDAP: Masquerade query Rewrites-Inbound MID 500000014 address reginald.brown@example.com to reginald.brown@example.com
Wed Feb 12 19:48:38 2014 Info: LDAP: Masquerade query Rewrites-Inbound MID 500000014 address amy.johnson@example.com to amy.johnson@example.com
Wed Feb 12 19:48:38 2014 Info: MID 500000014 rewritten to MID 500000031 by LDAP rewrite
Wed Feb 12 19:48:38 2014 Info: MID 500000031 ICID 0 From: 
Wed Feb 12 19:48:38 2014 Info: LDAP: Reroute query AD.routing MID 500000014 RID 0 address bill.jones@example.com to [('bill.jones@internal.example.com', '')]
Wed Feb 12 19:48:38 2014 Info: MID 500000031 ICID 0 RID 0 To: 
Wed Feb 12 19:48:38 2014 Info: LDAP: Reroute query AD.routing MID 500000014 RID 1 address amy.johnson@example.com to [('amy.johnson@internal.example.com', '')]
Wed Feb 12 19:48:38 2014 Info: MID 500000031 ICID 0 RID 1 To: 
Wed Feb 12 19:48:38 2014 Info: Message finished MID 500000014 done
Wed Feb 12 19:48:38 2014 Info: MID 500000031 attachment 'image001.jpg'
Wed Feb 12 19:48:38 2014 Info: MID 500000031 attachment 'image002.jpg'
Wed Feb 12 19:48:38 2014 Info: MID 500000031 Custom Log Entry: Attachment Names: image001.jpg, image002.jpg
Wed Feb 12 19:48:38 2014 Info: MID 500000031 Custom Log Entry: Attachment Sizes: 1736, 1525
Wed Feb 12 19:48:38 2014 Info: MID 500000031 Custom Log Entry: Attachment Types: image/jpeg, image/jpeg
Wed Feb 12 19:48:38 2014 Info: ICID 1000000201 close
Wed Feb 12 19:48:38 2014 Info: New SMTP DCID 70000094 interface 192.0.2.44 address 192.0.2.89 port 25
Wed Feb 12 19:48:38 2014 Info: DCID 70000094 STARTTLS command not supported
Wed Feb 12 19:48:38 2014 Info: Delivery start DCID 70000094 MID 500000027 to RID [0]
Wed Feb 12 19:48:38 2014 Info: Message done DCID 70000094 MID 500000027 to RID [0] 
Wed Feb 12 19:48:38 2014 Info: MID 500000031 matched all recipients for per-recipient policy DEFAULT in the inbound table
Wed Feb 12 19:48:39 2014 Info: Delivery start DCID 70000094 MID 500000026 to RID [0]
Wed Feb 12 19:48:39 2014 Info: Message done DCID 70000094 MID 500000026 to RID [0] 
Wed Feb 12 19:48:39 2014 Info: Delivery start DCID 70000094 MID 500000033 to RID [0]
Wed Feb 12 19:48:39 2014 Info: Message done DCID 70000094 MID 500000033 to RID [0] 
Wed Feb 12 19:48:40 2014 Info: MID 500000031 interim verdict using engine: CASE spam negative
Wed Feb 12 19:48:40 2014 Info: MID 500000031 using engine: CASE spam negative
Wed Feb 12 19:48:40 2014 Info: Delivery start DCID 70000094 MID 500000049 to RID [0]
Wed Feb 12 19:48:40 2014 Info: MID 500000031 interim AV verdict using Sophos CLEAN
Wed Feb 12 19:48:40 2014 Info: MID 500000031 antivirus negative 
Wed Feb 12 19:48:40 2014 Info: MID 500000031 Outbreak Filters: verdict negative
Wed Feb 12 19:48:40 2014 Info: MID 500000031 queued for delivery
Wed Feb 12 19:48:40 2014 Info: Message done DCID 70000094 MID 500000049 to RID [0] 
Wed Feb 12 19:48:40 2014 Info: Delivery start DCID 70000094 MID 500000031 to RID [0, 1]
Wed Feb 12 19:48:40 2014 Info: Message done DCID 70000094 MID 500000031 to RID [0, 1] 
Wed Feb 12 19:48:40 2014 Info: MID 500000031 RID [0, 1] Response '2.6.0  Queued mail for delivery'
Wed Feb 12 19:48:40 2014 Info: Message finished MID 500000031 done
Wed Feb 12 19:48:40 2014 Info: DCID 70000094 close

Technique: Transaction
Cisco ESA Logs (AKA Ironport Logs) - the log files themselves

▶ ICID - Incoming Connection ID, 
can contain many MIDs

▶ MID - Message ID
▶ DCID - Destination Connect ID, 

can contain many MIDs
▶ RID - Recipient ID (many 

Recipients per MID, though MID 
present in all lines)

IC
ID

M
ID

D
C

ID
R

ID



▶ With transaction, we need to jump through a one small hoop to get the relevant 
details from the ICID in every MID. This is because the ICID contains a few 
general parameters (SSL version, src_ip, etc.) that we want noted for every MID

Technique: Transaction
Cisco ESA Logs (AKA Ironport Logs) - transaction

sourcetype=ironport OR sourcetype=cisco:esa

| eventstats values(TLS) as TLS values(src_ip) 
as src_ip values(…) as … by ICID

| transaction MID 
maxpause=5m
maxspan=1h

| fields - _raw | fields sender recipient src_ip TLS

There is at least one message with ICID and MID in 
it, so if we use eventstats to distribute the important 
values to everything with an ICID, we will be able to 
just use transaction on MID and have what we want.

Now we can use transaction

Now you can send the completed results into your 
summary indexes. Note that you have to make sure 

you’re not skipping this search.  

Test Environment, over 3 hours of data 
(23k messages): 119 seconds



▶ Without transaction, you just leverage stats to group things together. You will 
often need to do streamstats or some other cleverness (defining day with 
strptime) to get around re-use of IDs, though Cisco ESA is simpler.

Technique: Transaction
Cisco ESA Logs (AKA Ironport Logs) - eventstats, stats

sourcetype=ironport OR sourcetype=cisco:esa

| eventstats values(TLS) as TLS values(src_ip) 
as src_ip values(…) as … by ICID

| stats values(icid) AS icid
values(src*) AS src*     

by mid

| eval recipient_count=mvcount(recipient)

There is at least one message with ICID and MID in 
it, so if we use eventstats to distribute the important 
values to everything with an ICID, we will be able to 
just use transaction on MID and have what we want.

Here we can use stats instead of transaction for a 3x 
speed boost!

Test Environment, over 3 hours of data 
(23k messages): 40 seconds - 3x faster



▶ This is a more complete example that can be run every 5 min

Technique: Transaction
Fuller Example of Grabbing Complete Ironport Logs

sourcetype=cisco:esa* earliest=-20m

| eventstats values(sending_server) as sending_server values(sending_server_dns_status) as 
sending_server_dns_status values(sending_server_dkim) as sending_server_dkim
values(sending_server_tls_status) as sending_server_tls_status
values(sending_server_tls_cipher) as sending_server_tls_cipher
values(sending_server_whitelist) as sending_server_whitelist by icid

| stats min(_time) as _time max(_time) as email_processing_complete_time
count(eval(searchmatch("Message Finished MID"))) as complete_count
count(eval(searchmatch("Start MID"))) as start_count values(d) as d values(message_id) as 
message_id values(message_subject) as message_subject values(mid) as mid 
values(recipient) as recipient values(sender) as sender values(spam_status) as spam_status
values(encoding) as encoding values(subject) as subject values(attachment) as attachment 
values(queue) as queue values(message_scan_error) as message_scan_error
values(message_size) as message_size values(sending_server) as sending_server
values(sending_server_dns_status) as sending_server_dns_status
values(sending_server_dkim) as sending_server_dkim values(sending_server_tls_status) as 
sending_server_tls_status values(sending_server_tls_cipher) as sending_server_tls_cipher
values(sending_server_whitelist) as sending_server_whitelist values(icid) as icid values(dcid) 
as dcid by mid 

| where complete_count > 1 AND start_count > 1 AND 
email_processing_complete_time >= relative_time(now(), "-7m@m") AND 
email_processing_complete_time < relative_time(now(), "-2m@m") 

| collect index=parsed_emails

Now we can pull all the fields we care about

Finally, send results into the summary index

For our base dataset we can pull in all the data from 
the last 20 minutes

Eventstats to pull fields out of the icid, and connect 
them with the MID

This where statement looks for complete 
transactions (both start and complete messages), 

that are in a five minute window



▶ "I want to know the first time someone connects a USB drive"
▶ "I want to know when someone first prints"
▶ "I want to know the first time {someone/something} {does / sees anything}"

▶ First Time Seen detections are very powerful! They are the cornerstone for many 
simpler UEBA tools, and they’ve been done with Splunk Enterprise / Enterprise 
Security for ages.

▶ Splunk Security Essentials showcases many examples of these detections, but 
the possibilities are almost literally limitless, and driven primarily by your data and 
your use cases.

Technique: First Time Seen Detection
Background and Challenges



▶ When doing a first time seen detection, you just need to leverage stats earliest() 
and stats (latest)!

Technique: First Time Seen Detection
Your first First Time Seen detection - First Logon to New Server

sourcetype=win*security 

| stats earliest(_time) as earliest latest(_time) as 
latest  by user, dest

| eval isOutlier=if(earliest >= relative_time(now(), 
"-1d@d"), 1, 0)

Start with our Windows logs (maybe filter for just 
logon activity - I grabbed a list of Windows Logon 

Event IDs for Splunk Security Essentials)

We can now just use stats earliest and latest to find 
the most recent logon time - technically we don’t 
need the latest, but it’s pretty cheap and useful

Finally we check to see if the earliest time (first 
logon) is in the last day.

That easy!



▶ Peer group detection complicates the query - see multireport under Advanced 
Commands, later in this doc. 

Technique: First Time Seen Detection
First Time Seen with Peer Group!

sourcetype=win*security | lookup peer_group user OUTPUT peergroup | makemv
peergroup delim=","

| multireport
[| stats values(*) as * by user dest] 
[| stats values(eval(if(earliest>=relative_time(maxlatest,"-1d@d"),dest,null))) as 

peertoday values(eval(if(earliest<relative_time(maxlatest,"-1d@d"),dest,null))) as 
peerpast by peergroup dest]

| eval user=coalesce(user, peergroup) | fields - peergroup | stats values(*) as * by 
user  dest

| where isnotnull(earliest) 

| eval isOutlier= if(isnotnull(earliest) AND earliest>=relative_time(maxlatest,"-
1d@d") AND isnull(peerpast),1,0)

Start with our Windows Logon events

Use multireport to pull the earliest and latest both for 
the user, and for their peer group

Then consolidate all the values for each user 

Get the latest and greatest for this 
detection with Splunk Security Essentials

Finally, we look for the user’s earliest and latest, 
where the peergroup past is empty

A quirk of the peer group analysis is that we can end 
up with users in the peer group who have never 

logged into that host - let’s filter them out



▶ By using a lookup cache, we don’t have to look over 30,60,100 days of data 
every time you run the search.

Technique: First Time Seen Detection
First Time Seen with a Lookup Cache!

sourcetype=win*security 

| stats earliest(_time) as earliest latest(_time) as latest  by user, dest

| inputlookup append=t lookup_cache.csv

| stats min(earliest) as earliest max(latest) as latest by  user, dest

| outputlookup lookup_cache.csv

| eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

I’m not even going to explain this here! Go to the 
"Technique: Lookup Caching" later in the doc

Get the latest and greatest for this 
detection with Splunk Security Essentials

While we’re at it, you should go check "Technique: 
Confidence Checking" later in the doc

If you like this, you’ll love "Technique: Time Series 
Detection" up next!



▶ Just for fun, because I’m just copy-pasting from Splunk Security Essentials at this 
point - First Logon to New Server with both a Peer Group AND a Lookup Cache!

Technique: First Time Seen Detection
First Time Seen with a Lookup Cache AND Peer Group! You’re a mad man! 

sourcetype=win*security 
| stats earliest(_time) as earliest latest(_time) as latest  by user, dest
| inputlookup append=t sample_cache_group.csv | stats min(earliest) as earliest 
max(latest) as latest by  user, dest
| outputlookup sample_cache_group.csv
| lookup peer_group.csv user OUTPUT peergroup | makemv peergroup delim=","
| multireport [| stats values(*) as * by user  dest ] [| stats 
values(eval(if(earliest>=relative_time(now(),"-1d@d"),dest ,null))) as peertoday
values(eval(if(earliest<relative_time(now(),"-1d@d"),dest ,null))) as peerpast by 
peergroup dest ]
| eval user=coalesce(user, peergroup) | fields - peergroup | stats values(*) as * by 
user  dest
| where isnotnull(earliest)
| isOutlier= if(isnotnull(earliest) AND earliest>=relative_time(now(),"-1d@d") AND 
isnull(peerpast),1,0)

Multi-Report AND a mid-search outputlookup? High 
Five time.

Get the latest and greatest for this 
detection with Splunk Security Essentials



▶ While we’ve been having fun with First Logon to New Server, this same search 
works for any first time seen detection

Technique: First Time Seen Detection
This is Very Generic

First Logon to New Server
sourcetype=win*security 
| stats earliest(_time) as earliest latest(_time) as latest  by user, dest
| eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

Authentication against a New Domain Controller
sourcetype=win*security 
| stats earliest(_time) as earliest latest(_time) as latest  by user, dc
| eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

First Access to a New Source Code Repository
sourcetype=source_code_access
| stats earliest(_time) as earliest latest(_time) as latest  by user, repo
| eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

First External Email Claiming to be Internal from Server
sourcetype=cisco:esa src_user=*@mycompany.com src!=10.0.0.0/8
| stats earliest(_time) as earliest latest(_time) as latest  by user, src
| eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

Familiar Filename on a New Path
Sourcetype=win*security EventCode=4688 `IncludeMicrosoftFiles`
| stats earliest(_time) as earliest latest(_time) as latest  by filename, path
| eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

New Database Table Accessed
sourcetype=database 
| stats earliest(_time) as earliest latest(_time) as latest  by user, table
| eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

New Interactive Logon by Service Account
sourcetype=win*security user=srv_* Logon_Type=2 OR .. 11 .. 12
| stats earliest(_time) as earliest latest(_time) as latest  by user, dest
| eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

New Parent Process for cmd.exe
sourcetype=win*security EventCode=4688 filename=4688
| stats earliest(_time) as earliest latest(_time) as latest  by parent_process
| eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)



▶ "I want to detect someone who {prints more / logs in more / logs into more 
devices / anything more} than usual"

▶ Time series analytics are very powerful! They are the cornerstone for many 
simpler UEBA tools, and they’ve been done with Splunk Enterprise / Enterprise 
Security for ages.

▶ Splunk Security Essentials showcases many examples of these detections, but 
the possibilities are almost literally limitless, and driven primarily by your data and 
your use cases.

Technique: Time Series Detection
Background and Challenges
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Frequently:
– Simple - medium complexity security logic
– Time series oriented
– Often require tuning
Rarely:
– Advanced Machine Learning driven
– Manages state in a non-time series fashion
– Normalizes identities based on DHCP

115

Technique: Time Series Detection
Trends among Splunk Core/ES Use Cases
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Anything traditionally rules built, e.g. first logon to new system
Unusually high # of connection attempts
Unusually high # of records accessed / printed / exported / etc
Unusually high # of files changed
Rare SHAs, TLS Certs, etc.
User actions from service account (Proxy, Failed Password Changes)
User actions from expired account

116

Technique: Time Series Detection
Example UBA Splunk Core/ES Use Cases
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We often want to each for attackers who are expanding their systems 
controlled, and data accessed. 
One technique for this is looking at # of logins per user, or # of destinations 
per source IP
Network Data provides source of truth
– I usually talk to 10 hosts
– Then one day I talk to 10,000 hosts
– ALARM!
How would we approach that? By doing a time series analysis.

Technique: Time Series Detection
Lateral Movement
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Consistently large

Inconsistent!

|	stats	count	sparkline(dc(dest))	by	src_ip

Technique: Time Series Detection
Detecting Variations Visually
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A measure of the variance for a series of numbers 

User Day One Day Two Day Three Day Four Avg Stdev
Jane 100 123 79 145 111.75 28.53
Jack 100 342 3 2 111.75 160.23

User Day Five # StDev Away from Average
… aka How Unusual?

Jane 500 12.6
Jack 500 2.42

Technique: Time Series Detection
What is Standard Deviation?
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… | stats avg( eval( 
if(_time < relative_time(now(),   "-1d@d"),        

count, null)
)) as average …

• Exclude Yesterday’s Value 
using Stats + Eval so your 
avg and stdev are accurate

• This is as hard as it gets

Technique: Time Series Detection
Make it a Better Correlation Search
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sourcetype="pan:traffic"
| bin span=1d _time | stats dc(dest) as count by src _time 
| stats max(eval(if(_time >= relative_time(now(), "1d"), count, null))) as latest
avg(eval(if(_time < relative_time(now(), "-1d"),count,null))) as average, 
stdev(eval(if(_time < relative_time(now(), "-1d"),count,null))) as stdev
by src
| where latest>stdev+average

Technique: Time Series Detection
Correlation Search Version
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index=windows OR index=login user=*
| bin span=1d _time | stats count by user _time 
| stats max(eval(if(_time >= relative_time(now(), "1d"), count, null))) as latest
avg(eval(if(_time < relative_time(now(), "-1d"),count,null))) as average, 
stdev(eval(if(_time < relative_time(now(), "-1d"),count,null))) as stdev
by user
| where latest>stdev+average

Technique: Time Series Detection
Other Variations: # of Logins Per Day
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index=windows OR index=login user=*
| bin span=1d _time | stats dc(host) as count by user _time 
| stats max(eval(if(_time >= relative_time(now(), "1d"), count, null))) as latest
avg(eval(if(_time < relative_time(now(), "-1d"),count,null))) as average, 
stdev(eval(if(_time < relative_time(now(), "-1d"),count,null))) as stdev
by user
| where latest>stdev+average

Technique: Time Series Detection
Other Variations: # of Servers Logged Into
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index=windows pages printed
| bin span=1d _time | stats sum(Num_Pages) as count by user _time 
| stats max(eval(if(_time >= relative_time(now(), "1d"), count, null))) as latest
avg(eval(if(_time < relative_time(now(), "-1d"),count,null))) as average, 
stdev(eval(if(_time < relative_time(now(), "-1d"),count,null))) as stdev
by user
| where latest>stdev+average

Technique: Time Series Detection
Other Variations: # of pages printed
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index=crm_logs viewed card
| bin span=1d _time | stats dc(card_id) as count by user _time 
| stats max(eval(if(_time >= relative_time(now(), "1d"), count, null))) as latest
avg(eval(if(_time < relative_time(now(), "-1d"),count,null))) as average, 
stdev(eval(if(_time < relative_time(now(), "-1d"),count,null))) as stdev
by user
| where latest>stdev+average

Technique: Time Series Detection
Other Variations: # of Credit Cards Viewed
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index=sep* api="File Write" tag=target_users `sep_write_exclude` 
| bin span=1d _time | stats count by user _time 
| stats max(eval(if(_time >= relative_time(now(), "1d"), count, null))) as latest
avg(eval(if(_time < relative_time(now(), "-1d"),count,null))) as average, 
stdev(eval(if(_time < relative_time(now(), "-1d"),count,null))) as stdev
by user
| where latest>stdev+average

Technique: Time Series Detection
Other Variations: # of Files Written to USB
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index=health_logs sourcetype=record:access
| bin span=1d _time | stats dc(patient_id) as count by user _time 
| stats max(eval(if(_time >= relative_time(now(), "1d"), count, null))) as latest
avg(eval(if(_time < relative_time(now(), "-1d"),count,null))) as average, 
stdev(eval(if(_time < relative_time(now(), "-1d"),count,null))) as stdev
by user
| where latest>stdev+average

Technique: Time Series Detection
Other Variations: # of Patient Records Viewed
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Technique: Time Series Detection



▶ If you have ever said sentences like the one in the header above, then this slide’s for you!

▶ The traditional use case for Standard Deviation is predicting exactly what percentage of a population fits into a certain fraction. For 
example, you might set a bar at 2 standard deviations and know that means 5% of the population fits. Or 3 standard deviations, for 
0.3% of the population. (Just google 3 standard deviations). 

▶ However, this is entirely dependent on having a normal distribution. A normal distribution is that stereo-typical bell curve graph that 
you see on stats textbooks. 

▶ I the security world, we virtually never see a normal distribution. We see all kinds of slanted distributions, and that gives a very 
justified concern about relying in math that’s not quite sound!

▶ As a result, if you were to say "I’m going to user 3 standard deviations because I only want to see users who fit into the top 0.3%"
you would definitely be misled. However, usually in security we don’t care about such specific designations. We want someone 
who is "anomalous" or "very unusual."

▶ Looking broad strokes across many datasets, my general rule of thumb is that if someone is above 3 stdev, then they’re 
"anomalous". Above 6 stdev and they’re "suspicious." Anomalous things, don’t send directly to the SOC, just track it. Above 6 
stdev, send to the SOC. 

▶ That rule of thumb may not fit your dataset, but it’s generally pretty easy to find out - just look at your data to see what kind of 
events show up at each threshold. If you see 6 stdev and think, "ah, that’s probably not black-and-white enough to send to the 
SOC" then go to 10 stdev.

▶ Of course, you can also take a different approach to time series detection and not use StDev, it’s not the only option…

Technique: Time Series Detection
Wait, isn’t Standard Deviation only Accurate for Normal Distributions?



▶ IQR queries are a bit easier to understand conceptually, and they 
aren’t swayed by dataset extremes. They calculate the difference 
between the 25th percentile and the 75th percentile, let’s call it X. 
Then they look for any data points more than X above the 75th

precentile.
▶ Just like with StDev, we still have a coefficient - with stdev you 

look for datapoints 6 stdev above the average, here you might 
look for items 1.5, 3, or 6 IQRs above the 75th percentile.

▶ In my experience, I prefer stdev because I do care about 
including the outliers in my variance calculation, but it’s purely 
preference. I have asked many different people with PhDs and 
data science degrees, and there’s never been a concrete 
difference.

▶ For an example using IQR, check out the Machine Learning 
Toolkit example at the end of this presentation. 

Technique: Time Series Detection
An Alternative to StDev: Inter-Quartile Range



▶ Sometimes IQR and StDev just aren’t the right conceptual choices - for a particular dataset the data variance 
doesn’t quite fit. Here are a couple of other techniques to keep in mind.

▶ Comparative Ratios: In our "Search: When Log Sources Go Quiet" example later in this doc, we don’t look at the # 
of Windows Security Logs, we look at the ratio of Windows Security Logs to overall logs. That will provide much 
more accurate results. 

▶ Normalizing data via log: https://www.r-statistics.com/2013/05/log-transformations-for-skewed-and-wide-distributions-from-practical-data-science-with-r/

▶ I also chatted with one of the Splunk ML experts, Andrew Stein, who told me:
You may also consider Kolmogorov-Smirnov. Given two probability distributions (one reference, one unknown) you 
can measure how similar are the two. So make your reference = normal, and your unknown the observed one. For 
example I could measure what a specific time series is verse a normal distribution (spl for normal is on bbo.com ) 
using KS or whatever and I could tell if a time series was "normal"
• He also called out: https://conf.splunk.com/files/2016/slides/a-very-brief-introduction-to-machine-learning-for-itoa.pdf

• And http://shahramabyari.com/2015/12/21/data-preparation-for-predictive-modeling-resolving-skewness/

• And https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

• And that can also smooth any time series in Splunk using http://docs.splunk.com/Documentation/MLApp/2.3.0/API/SavitzyGolayFilter but 
that may be too advanced. This comes up in IOT metrics all the time

• So… get reading. Or make sure your output looks generally in line with what you want and pretend you’re a data scientist. You will need a 
mustache and hipster glasses.

Technique: Time Series Detection
Other Alternatives to StDev



▶ Ultimately there’s no magic number of stdev, or IQR, or etc. Experiment with your 
data and see what comes out.

▶ When you are using any behavioral profile, a key concern is confidence checking. 
After all, we don’t want to overwhelm the SOC with noise.
• Go check out the "Technique: Confidence Checking" elsewhere in this doc.

▶ Scaling this kind of detection is also very important for even medium sized 
organizations!
• Go check out "Technique: Summary Indexing" elsewhere in this doc.

Technique: Time Series Detection
Three Last Thoughts



▶ "Wait, first logon to new server? No. No! I don’t want that running in my network! 
That is way too noisy! Stay away from me!"

▶ As detailed in the First Time Seen Detection section, we can easily detect 
interesting activities such as the first time a user logs into a server for the first 
time. 

▶ Unfortunately, some users do this all the time. For a person in marketing who 
typically logs into 4 servers a day, logging into 100 new servers is terrifying! For 
the IT Admin runs Patch Tuesday with some epic scripts she cooked up, not 
remotely interesting.

▶ One way to approach this is to combine the above two approaches to not alert 
every time someone logs into a new server, but alert if someone logs into more 
new servers than they typically do. 

Technique: Time Series * First Time Seen Detection
Background and Challenges



▶ We’ve already explained how both of these searches in the prior two sections -
the only part we’ve covered less is Summary Indexing which you can take a look 
at in the section of the same name. 

Technique: Time Series * First Time Seen Detection
Bam! Bringing it all together

Detect first time logons

sourcetype=win*security 
| stats earliest(_time) as earliest latest(_time) as latest  

by user, dest
| inputlookup append=t lookup_cache.csv
| stats min(earliest) as earliest max(latest) as latest 
by  user, dest

| outputlookup lookup_cache.csv
| where if(earliest>=relative_time(now(), "-1d@d"), 1, 0)

| eval alerttype="FirstTimeSeen", 
alertname="FirstLogonToNewServer"

| collect index=anomalies

Detect an anomalous number for a user, generate a *single* alert

Index=anomalies alerttype="FirstTimeSeen"
alertname="FirstLogonToNewServer"
| bin span=1d _time | stats count by user _time 
| stats 
max(eval(if(_time >= relative_time(now(), "1d"), count, null))) as latest
avg(eval(if(_time < relative_time(now(), "-1d"),count,null))) as average, 
stdev(eval(if(_time < relative_time(now(), "-1d"),count,null))) as stdev
by user
| where latest>3*stdev+average

Another approach here would be to maintain a lookup that showed the 
avg number of servers any given user logs into per day. That way you 

can factor that into how you handle the alert 
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NINJA Techniques
Time to put on your sunglasses



▶ "I want to be able to look at all the data. I mean ALL the data."
▶ "I’m running 5+ concurrent correlation searches at all times and need to speed 

them up!"
▶ "We are spending more on Splunk so that we can afford the correlation searches 

we have to run over our massive dataset."

Technique: tstats
Background and Challenges



Raw Search: 21 Seconds tstats Search: 2 Seconds
[search tag=malware earliest=-20m@m latest=-15m@m | table dest
| rename dest as src ] 

earliest=-20m@m (sourcetype=sysmon OR 
sourcetype=carbon_black eventtype=process_launch) OR 
(sourcetype=proxy category=uncategorized)

|  stats count(eval(sourcetype="proxy")) as proxy_events
count(eval(sourcetype="carbon_black" OR sourcetype="sysmon")) 
as endpoint_events by src

| where proxy_events > 0 AND endpoint_events > 0

| tstats prestats=t summariesonly=t count(Malware_Attacks.src) as 
malwarehits from datamodel=Malware where 
Malware_Attacks.action=allowed groupby Malware_Attacks.src

| tstats prestats=t append=t summariesonly=t count(web.src) as 
webhits from datamodel=Web where 
web.http_user_agent="shockwave flash" groupby web.src

| tstats prestats=t append=t summariesonly=t 
count(All_Changes.dest) from datamodel=Change_Analysis where 
sourcetype=carbon_black OR sourcetype=sysmon groupby
All_Changes.dest

| rename web.src as src Malware_Attacks.src as src
All_Changes.dest as src

| stats count(Malware_Attacks.src) as malwarehits count(web.src) 
as webhits count(All_Changes.dest) as process_launches by src

Technique: tstats
tstats speeds search dramatically. 



Raw Search: 68,476 Seconds tstats Search: 6 Seconds
▶ index=* earliest=-24h 

| bucket _time span=1h 
| stats count by sourcetype, _time

▶ | tstats count where index=* 
by sourcetype _time span=1h

Technique: tstats
tstats speeds search dramatically. 



▶ There is far more content to cover about tstats than is reasonable in just this 
section, so let’s go view the entire talk from conf2016, that will be repeated at 
conf 2017.

▶ Check out: http://dvsplunk.com/ninjutsu

Technique: tstats
Let’s just summarize this in one slide, shall we?



▶ "How can I analyze data that was just ingested, regardless of timestamp?"
▶ "How much of my data is coming in with incorrect timestamps?"
▶ "How much of my data is coming in with future timestamps?"

▶ All data is indexed with _time, but we also add _indextime which shows the time 
that the data was indexed. This is powerful!

Technique: Timestamps and Timestamps
Background and Challenges



▶ When you query _time, you hit earliest. When you query _indextime, you hit 
_indextime. These earliest/latest settings both apply, but keep the _time as low 
as possible because that defines what indexes you need to search through.

Technique: Timestamps and Timestamps
Searching Data that was just Indexed

index=unstable_timestamps

earliest=-24h 
latest=+24h 

_index_earliest=-60m

| table fields you care about

This is a slower approach, so only use when you 
have known unstable indexes

Then include your _index_earliest

You should specify a big _time window that you know 
will encompass the time instability, but as little more 

as possible

Finally, continue with your search



▶ You can look very old timestamps that was just indexed, though beware that this 
search is extremely slow because it needs to look through every old bucket you 
have. It’s prudent to run this periodically as an all time real time search (if you 
have Indexed Real-time turned on) or occassionally to test. 

Technique: Timestamps and Timestamps
Searching Data with Very Old Timestamps

| tstats count min(_time) as min_ingestion_time

where index=* 

earliest=0 latest=-1h 

_index_earliest=-5m _index_latest=now 

by host sourcetype

| convert ctime(min_ingestion_time)

Use tstats to quickly parse out the count and the 
min(_time) 

Then include your _index_earliest

Pick a giant _time window. You may want to start 
with latest=-8h to get the low hanging fruit.

Format the oldest timestamp so that it’s readable



▶ Looking at events with future timestamps is typically very fruitful for finding 
incorrect timestamps. 

Technique: Timestamps and Timestamps
Searching Data with Future Timestamps

| tstats count max(_time) as max_ingestion_time

where index=* 

earliest=+30s latest=+20y 

_index_earliest=-5m _index_latest=now 

by host sourcetype

| convert ctime(max_ingestion_time)

Use tstats to quickly parse out the count and the 
min(_time) 

Then include your _index_earliest

Pick systems 30 seconds 

Format the oldest timestamp so that it’s readable



▶ "I want to run several different sets of reporting commands from the same 
search"
• E.g., "I want to update this lookup with one subset of the dataset, then run anomaly detection on 

a different subset"
▶ "I want to search multiple datasets, and apply different streaming commands to 

each set"
▶ "I don’t know what my fields will be named, but I have to manipulate them 

anyway!"
▶ "I want to do lots of other *weird* stuff"

Technique: Advanced Search Commands
Background and Challenges



▶ We all know you can do index=a OR index=b, but if you have to transform each differently this 
becomes a major hassle.

▶ Multisearch will actually run two different searches, but bring the results together for you.

Technique: Advanced Search Commands
The multisearch Command

| multisearch

[ index=ips | 
`lower_severity_for_low_confidence`]

[ index=sandbox_confirmed | 
`raise_severity_for_high_confidence`]

| stats max(severity) values(index) by host

You start with | multisearch, so that Splunk knows 
you don’t want to start with a normal search

Any additional searches can be put in additional sets 
of angle brackets

Just like subsearches, put each search in square 
brackets. You can use any streaming search 

commands

Finally, continue with your search



▶ When running multiple searches over the same dataset, use case developers have to consider "is 
this something that can be combined." While you don’t want to go crazy (consider Multi-Scenario 
Alerts in this document), you can get much more convergence with multireport.

▶ I find this most useful when you have one search that leverages a stored lookup (or you build a 
lookup to provide context to an analyst), but you also want to update the stored lookup without 
managing another search. But there are many use cases.  

Technique: Advanced Search Commands
The multireport Command

index=proxy
| multireport

[ | stats values(domain) count min(_time) max(_time) by user 
| outputlookup contextual_per_user_info.csv | where 
hide="TheseEvents"]

[ | search category=adult | collect index=hr | where 
hide="TheseEvents"]

[ | lookup threatIntel domain | search threat_hit=*]

Each search sits in a set of square brackets. We can 
do whatever we want to in here, including 

outputlookups, collects, etc.
Multireport will append the output of each search, so 

here we use the | where clause that will hide all 
results from the analyst

Multireport forks off multiple searches

This final search is the one I actually want sent to the 
user (or correlation search, etc.), so no | where 



▶ The foreach command is great for two things: one is saving yourself copy-paste work to apply the same 
change to many fields, and the other is manipulating fields whose name you don’t know.

▶ Foreach works by taking a list of fields (or *) and then a set of streaming commands to run.
(What’s a streaming command? https://docs.splunk.com/Documentation/Splunk/6.6.2/Search/Typesofcommands)

▶ Remember with weird field names in eval, double quotes on the left side, single quotes on the right side. So: 
| eval "<<FIELD>>_value" =  "The value for <<FIELD>> is: " . ‘<<FIELD>>’

Technique: Advanced Search Commands
The foreach Command

▶ Repeat Operations ▶ Unknown Field Names

Index=business_operations sourcetype=hourly_data
| stats avg(metric_*) as hourly_average_*
| foreach hourly_average_* 

[| eval "<<FIELD>>" = round(‘<<FIELD>>’ , 2) ]

This search will track what fields are defined in every sourcetype
in your environment. Pretty useful, right? Truthfully, most times 
this scenario comes up at the end of half a page of SPL 
converting some terrible XML or what have you… this is simpler.

index=* 

| fields - _raw whatever other default fields we don’t want

| eval field_names = ""
| foreach * [ eval field_names = mvappend(field_names, 
"<<FIELD>>")]
| stats values(field_names) by sourcetype



▶ One of my favorite .conf slide decks of all time is Lesser Known Search 
Commands by Kyle Smith, at .conf 2016

▶ Not only is Kyle a proud fez-wearing man, his talk also walks through really really 
powerful tools. I *highly* recommend it!

▶ Slides: http://conf.splunk.com/files/2016/slides/lesser-known-search-commands.pdf

▶ Recording: http://conf.splunk.com/files/2016/recordings/lesser-known-search-commands.mp4

Technique: Advanced Search Commands
These are cool! What else do you have?



▶ "I’m on a hunting expedition and I want to look for unusual {user agents, urls, 
etc}"

▶ "I know most of these events are similar, which ones are different?"

▶ Metacharacteristics are a concept I first heard from Monzy Merza, our Head of 
Security Research, and basically refer to objective numeric measures you could 
use to measure a string so that you can find unusual strings in a big series.

▶ Examples here include length, punctuation, frequency, temporality, or coherence.
▶ Few organizations really come to use these, but for the true Ninja who has 

conquered all low hanging fruit, these can be the gateway to something great.

Technique: Metacharacteristics
Background and Challenges



Shape can be the length of a URL, the punct of a URL etc.
http://myurl.com/codepath
http://myurl.com/codepath?query=Robert%2527)%3b%2520DROP%2520TABL
E%2520Students%3b

Use eval with len (length), punct, and replace

Technique: Metacharacteristics
Shape



▶ Understand your common ratios is easy - HTTP GET/POST/Connect/Delete. 
Track the # of GETs vs POSTs, the # of text/html vs application/octet-stream

▶ You’ve been around for 2,5,10,20 years. Track how often you talk to different 
websites, and alert on newness

▶ Detect with top/rare/stats/timechart
▶ Leverage the First Time Seen detection and Time Series Analysis detections from 

this doc for applying some of these capabilities in a correlation search.

Technique: Metacharacteristics
Frequency



▶ Long URLs typically immediately follow short urls (or are to advertising servers)
▶ Examples:

• https://goo.gl/maps/yjXdP
• https://www.google.com/maps/place/270+Brannan+St[202 characters clipped]

▶ Detect with: streamstats
▶ Many activities occur only during 9-5, 8-6, or etc.
▶ Detect with: date_hour (if not global) or eval’s strftime()

Technique: Metacharacteristics
Temporality



Coherence (in this case) - Systems that are servers tend to stay servers, systems 
that are clients tend to stay clients. Systems that don’t generate a lot of denies 
don’t tend to be denies.
Also useful for looking at network traffic

Technique: Metacharacteristics
Coherence



Technique: Metacharacteristics

15
4

| tstats summariesonly=t count from datamodel=Network_Sessions where src!=dest
earliest=-30d@d groupby All_Sessions.src_ip All_Sessions.dest_ip _time span=1d  | 
eval pairs = mvappend("src|" + 'All_Sessions.src_ip', "dest|" + 'All_Sessions.dest_ip')  | 
fields pairs _time | mvexpand pairs | rex field=pairs "(?<direction>.*?)\|(?<host>.*)" |  
bucket _time span=1d | stats count(eval(direction="src")) as initiating 
count(eval(direction="dest")) as terminating by host _time | eval isRecent = 
if(_time>relative_time(now(), "-1d"), "yes", "no") | eval ratio = initiating / 
(initiating+terminating) |  stats avg(eval(if(isRecent="no", ratio, null))) as avg_ratio
avg(eval(if(isRecent="yes", ratio, null))) as recent_ratio by host | where (avg_ratio > 0.9 
AND recent_ratio < 0.3) OR (avg_ratio < 0.1 AND recent_ratio > 0.7)

Example One 
(No Explanation? Welcome to Ninja Section! Also, it’s hard, and this presentation is due tomorrow!)



Technique: Metacharacteristics

15
5

| tstats prestats=t summariesonly=t count(All_Sessions.src_ip) from 
datamodel=Network_Sessions where All_Sessions.src_ip!=All_Sessions.dest_ip
All_Sessions.src_ip=* earliest=-30d@d groupby All_Sessions.src_ip _time span=1d | 
tstats prestats=t append=t summariesonly=t count(All_Sessions.dest_ip) from 
datamodel=Network_Sessions where All_Sessions.src_ip!=All_Sessions.dest_ip
All_Sessions.dest_ip=* earliest=-30d@d groupby All_Sessions.dest_ip _time span=1d | 
rename All_Sessions.src_ip as ip All_Sessions.dest_ip as ip |  bucket _time span=1d | 
stats count(All_Sessions.src_ip) as initiating count(All_Sessions.dest_ip) as terminating 
by ip _time | eval isRecent = if(_time>relative_time(now(), "-1d"), "yes", "no") | eval ratio 
= coalesce(initiating,0) / (coalesce(initiating,0)+coalesce(terminating,0)) | where 
isnotnull(ratio) |  stats sum(initiating) sum(terminating) avg(eval(if(isRecent="no", ratio, 
null))) as avg_ratio avg(eval(if(isRecent="yes", ratio, null))) as recent_ratio by ip | where 
isnotnull(recent_ratio) AND isnotnull(avg_ratio) | where (avg_ratio > 0.9 AND 
recent_ratio < 0.8) OR (avg_ratio < 0.1 AND recent_ratio > 0.2)

Example Two



▶ "I have a bunch of numeric measures and I want to find outliers!"
▶ "I am looking for new and relatively unproven ways to hunt!"
▶ Let’s be honest: "How do I use this Machine Learning Toolkit?"

▶ Splunk’s Machine Learning Toolkit (hereafter referred to as just MLTK) is a great 
way to build your own Machine Learning (ML) use cases with algorithms that are 
already written, and packaged in Splunk. 

▶ The benefit is obvious - ML can allow you to do some detections you simply can’t 
do otherwise. The downside is that there’s a lot more hand waving and magic 
and uncertainty involved with ML than with normal Splunk.

▶ I highly recommend reviewing the Time Series Analysis and First Time Seen 
analysis sections of this doc before diving into this.

Technique: Machine Learning Toolkit Numeric Clustering
Background and Challenges



▶ When approaching difficult problems with Machine Learning, remember that they are difficult problems for a 
reason. ML isn’t a magic wand, ML doesn’t fix problems that you don’t understand. ML’s greatest skill is to 
take an understood solution that would be impossible with your manpower or existing computation and then 
scale it higher. 

Technique: Machine Learning Toolkit Numeric Clustering
Obligatory xkcd #1

https://xkcd.com/1831/



▶ Security MLTK adoption has been slower than general MTLK adoption, but we have two examples of using 
MLTK that seem very solid: supervised detection of malicious domains built by Philipp Drieger out of Munich, 
and unsupervised clustering of numeric time series data built jointly by US Splunk Security and ML 
Specialists.

▶ Philipp’s Malicious Domain detection is the best example of demonstrating how to use the MLTK that I have 
ever seen. The core scenario is that we can use domains that are known to be a part of botnets to predict 
the qualities of future C2 domains for those botnets. Philipp found an open source list of 50k domains with 
the associated families, and then converted those to "features" (next slide) using eval, URL Toolbox, and 
also MLTK. Then he tried several clustering algorithms to see which gave him the best accuracy. Once he 
had the model, he tried it out on a much larger list to track the true/false positive/negative ratios. This is great 
work that could be used by advanced organizations
• … waiting on link to content … … you can always ask your Splunk team to show it to you!

▶ The Security + ML Specialist teams worked together to identify anomalies in Salesforce.com (SFDC) audit 
data (which is a decent proxy for any three tier application server). The idea was to detect users who were 
acting unusually in SFDC, specifically with the indication that they were going to exfiltrate data. This is the 
scenario that we will go through over the following slides.

Technique: Machine Learning Toolkit Numeric Clustering
Best Known Examples of Security MLTK



▶ There is a slightly different vocabulary when we talk Machine Learning -
both IT/Security and Machine Learning are practices that have been 
around for many decades, but they grew up independently and so 
developed their own dialects. So that you can follow Machine Learning 
discussions, here are the key terms:

▶ Entity - whatever it is you’re analyzing. Might be a user, might be a 
computer, might be a virus signature.

▶ Features - these are the fields that you will analyze in your input data. 
▶ Feature Selection - this is the process of deciding what fields to 

analyze. For example, I checked a few days of SFDC logs and found 
1164 fields - how do you decide what will be impactful?

▶ Supervised - an algorithm where you are labeling your input data as 
being "good/bad" or by malware family, etc. Over-simplified version: "Do 
you have examples of what you want to detect? Supervised."

▶ Unsupervised - an algorithm where you don’t label your input data, and 
the algorithm itself just comes up with answers. Over-simplified version: 
"You don’t have examples of what you want to detect? Unsupervised."

Technique: Machine Learning Toolkit Numeric Clustering
Machine Learning Vocab - Features and and Supervised



▶ SFDC has an Event Log File (additional cost) audit log that allows you to see what your users are doing 
inside of Salesforce. It creates a daily dump listing activities by user. So when you run a query, you can see 
each request made, each API connection

▶ 2017-02-06T15:52:09.200+0000 SFDCLogType="DocumentAttachmentDownloads" SFDCLogId="0AT33000000UCXqGAK" SFDCLogDate="2017-02-
06T00:00:00.000+0000" TIMESTAMP_DERIVED="2017-02-06T15:52:09.200Z" REQUEST_ID="491x_Vi5XxDS1AVeRhRaXF"
EVENT_TYPE="DocumentAttachmentDownloads" USER_ID_DERIVED="005400000083CQSAA2" USER_ID="005400000083CQS"
ENTITY_ID="01540000000Mc72" FILE_NAME="Splunk - CRM.png" FILE_TYPE="image/png" TIMESTAMP="20170206155209.200"
ORGANIZATION_ID="00D400000003VqL"

▶ 2017-02-06T15:52:08.374+0000 SFDCLogType="URI" SFDCLogId="0AT33000000MhY5GQK" SFDCLogDate="2017-02-06T00:00:00.000+0000"
DB_BLOCKS="16113" REQUEST_STATUS="S" RUN_TIME="989" USER_ID_DERIVED="005400000083CQSAA2" REFERRER_URI="[...]"
URI="/home/home.jsp" URI_ID_DERIVED="" DB_TOTAL_TIME="582637378" USER_ID="005400000083CQS" SESSION_KEY="G/lti8OvlcoIBd1R"
CLIENT_IP="[...]" REQUEST_ID="491x_P33DCVcFfVeRhqoSk" DB_CPU_TIME="420" EVENT_TYPE="URI" LOGIN_KEY="aGsG3ecCQGKmHgdL"
TIMESTAMP_DERIVED="2017-02-06T15:52:08.374Z" ORGANIZATION_ID="00D400000003VqL" TIMESTAMP="20170206155208.374" CPU_TIME="344"

▶ 2017-02-06T15:52:05.547+0000 SFDCLogType="Login" SFDCLogId="0AT33000000UhXuGAK" SFDCLogDate="2017-02-06T00:00:00.000+0000"
BROWSER_TYPE="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.95 Safari/537.36"
REQUEST_STATUS="" USER_ID_DERIVED="005400000083CQSAA2" URI="/index.jsp" DB_TOTAL_TIME="76331254" CLIENT_IP="[myip]" LOGIN_KEY=""
SOURCE_IP="[myip]" API_TYPE="" CPU_TIME="44" SESSION_KEY="" RUN_TIME="133" CIPHER_SUITE="ECDHE-RSA-AES256-GCM-SHA384"
USER_ID="005400000083CQS" TIMESTAMP_DERIVED="2017-02-06T15:52:05.547Z" API_VERSION="9998.0" REQUEST_ID="491x_Hi2VageXqMf12zgiXpF"
USER_NAME="david.veuve" EVENT_TYPE="Login" URI_ID_DERIVED="" TLS_PROTOCOL="TLSv1.2" TIMESTAMP="20170206155205.547"
ORGANIZATION_ID="00D400000003VqL"

Technique: Machine Learning Toolkit Numeric Clustering
SFDC Data Example



▶ The first thing you typically need to do with ML is feature selection. Inside of Splunk, we typically do this via stats. I just picked out events that looked interesting.

▶ Then we need to normalize the data. In this case, we want to normalize on a per-user basis, so that we maintain the variation for a single user but overall keep 
visibility when a user suddenly changes dramatically. The core requirement here is to be able to detect a user who rarely uses SFDC and then starts exporting key 
contacts, while also detecting a power user who exports all of the contacts and all of the opportunities and etc. There are a few ways to do this, but we will use 
eventstats to normalize to stdev on a per-user basis. 

▶ Invariably then, we will want to simplify the number of fields that we are analyzing. Each additional field adds a lot of compute time for the down-stream analysis. 
The most common way to do that is with an algorithm called PCA (Principal Component Analysis). PCA will take multiple fields (in this case 11) and compress them 
down into X number of fields (in this case 5). This is a lossy compression, so we do lose some detail in the variability, but it tries to capture how much the fields 
move. You can think of this as compressing a music file - you can use FLAC and it will take more time and more space but lose no quality, you can use a 256 bit 
MP3 and you will lose little quality but compress well, or you can use 32 bit MP3 and takes little space but sounds awful. We want to shoot for 256 bit MP3.

Technique: Machine Learning Toolkit Numeric Clustering
Defining the Overall Plan

▶ Now we’re ready to get really data-sciency. It’s time to use k-means to cluster our data together. What we will end up 
with is a few very large clusters with most of our data points - we can think of these clusters as "people acting 
normally." Then we will run into a few nodes that are technically a part of that cluster but very very far from the cluster 
center - those are interesting. Also interesting are very small clusters (only a few data points), as they’re by definition 
anomalous. Notably, if you talk to data scientists (if you *are* a data scientist!) one of the most common questions 
about this approach is "how do you decide on your k." K-means groups things into k clusters - you have to tell it how 
many clusters to make. We jointly decided on 5 for this use case, with the option to further tune. For more, see 
"Downsides to Building it Yourself" at the end of this section.

▶ To figure out which cluster points we actually want to return, we will use Inter-Quartile Range. IQR (detailed in the 
Time Series Analysis section) will help us determine the amount of variation in a typical cluster, and find the outliers 
(and by how much they’re outliers). It is not heavily swayed by a long tail, so a few very distant outliers won’t affect 
how it views the core group. See that screenshot of a 3D scatterplot of our dataset? We want the Green distant dot, 
and probably some of those Purple ones too. 

▶ Finally we will use | where to look for either small clusters, or nodes that are very far from their cluster. For the former,
we will have a static threshold for how many members in a cluster counts as "small" and for the latter we will use a 
coefficient that we can tune based on the results we are seeing.



▶ Depending on who you ask, 50-90% of a Data Scientist’s time is spent collecting, ETLing and 
formatting data. Splunk makes that exceedingly easy.

▶ Below I parsed through SFDC data to pull out the individual fields I felt most likely return Security 
Value. I then ran an | outputlookup so that I could feed it to the ML algorithm repeatedly. 

Technique: Machine Learning Toolkit Numeric Clustering
Building the Base Dataset

index=sfdc
| bucket _time span=1d  
| stats dc(eval(if(like(URI_ID_DERIVED, "00140000%"), URI_ID_DERIVED, null))) as NumAccounts

dc(eval(if(like(URI_ID_DERIVED, "0063300%"), URI_ID_DERIVED, null))) as NumOpts
sum(ROWS_PROCESSED) as ROWS_PROCESSED 
count(eval(EVENT_TYPE="Login")) as Logins 
count(eval(EVENT_TYPE="Report")) as ReportsIssued
count(eval(EVENT_TYPE="API" OR EVENT_TYPE="BulkApi" OR EVENT_TYPE="RestApi")) as APICalls
sum(DB_CPU_TIME) as DB_CPU_Time
sum(RUN_TIME) as RUN_TIME 
sum(DB_BLOCKS) as db_blocks
dc(CLIENT_IP) as UniqueIPs
dc(ORGANIZATION_ID) as NumOrganizations
dc(ENTRY_POINT) as ApexExecution_Entry_Type

by USER_ID _time
| outputlookup sfdc_aggregated_data.csv



▶ Now we actually do our ML!

Technique: Machine Learning Toolkit Numeric Clustering
Running the Detection

| inputlookup sfdc_aggregated_data.csv

| eventstats avg(*) as AVG_* stdev(*) as STDEV_* by USER_ID         
| foreach * [ eval "Z_<<FIELD>>" = ('<<FIELD>>' - 'AVG_<<FIELD>>' ) 
/ 'STDEV_<<FIELD>>'] | fields - AVG_* STDEV_*  | fillnull

| fit PCA k=5 Z_* 

| fit KMeans k=5 PC_* 

| eventstats max(clusterDist) as maxdistance p25(clusterDist) as 
p25_clusterDist p50(clusterDist) as p50_clusterDist p75(clusterDist) as 
p75_clusterDist dc(USER_ID) as NumIDs count as NumEntries by 
cluster
| eval MaxDistance_For_IQR= (p75_clusterDist + 

12 * (p75_clusterDist - p25_clusterDist))

| where NumEntries < 5 OR clusterDist > MaxDistance_For_IQR

We start with the lookup just created

Then we use eventstats again to determine the Inter-
Quartile Range of our data points versus the clusters 

that k-means just found. 

Then we use eventstats and foreach to convert every 
numeric field to a Z score (how many stdev away 

from avg it is), normalizing per user 

Finally, filter for the results we want to see.

PCA lets us reduce from 11 fields to 5 fields

K-means clusters the PCA output

Notably, even with IQR you decide on some noise 
filter. Here we use 12 IQRs, a common base is 1.5.



▶ Remember to beware of relying on any analysis that you don’t 
understand. That doesn’t mean that you shouldn’t rely on it, 
but not blindly. Two ways in which this applies.

▶ If you are not a PhD with a solid understanding of how 
Machine Learning actually works, you should consult one 
before building your primary detection mechanisms on ML (I 
personally like to augment with ML, rather than rely on ML).

▶ If you have one working example that you feel very 
comfortable with, and are then going to apply it to another, 
make sure that second use case really resembles the first. 
Faulty underlying assumptions will doom any project.

▶ Tangentially: these rules also apply to data scientists. For 
example, Deep Learning is a new hot trend which is even 
deeper linear algebra that is far more difficult to detect. You 
may get ML intuitively, but you could still be just playing 
guesswork for Deep Learning. Know your limits.

Technique: Machine Learning Toolkit Numeric Clustering
Obligatory xkcd #2

https://xkcd.com/1831/



▶ When I describe this use case to people, I usually tell them that it’s more appropriate for hunting than for alerting, at this 
point in time.

▶ The primary reason is that this is a relatively untested scenario. We built this in the lab, and we’ve seen some value in 
realistic datasets, but we don’t know how it will work in the field over hundreds of customers, like we do with the Time 
Series or First Time Seen analysis. 

▶ That said, there is a big secondary reason: this event is harder for analysts to understand. This is an endemic problem in 
ML detections (something we work very hard to overcome in UBA). Consider the data at the bottom - this is for a user / 
day who was most anomalous out of 140k users/days. If you were a SOC analyst, what would you do with this alert?

▶ With all new categories of detection, they will usually start by being viewed by Use Case Dev / CERT / Hunt Teams, and 
then progress to Tier 3, Tier 2, before eventually Tier 1. I would recommend being conservative with this particular 
technique for now. 

Technique: Machine Learning Toolkit Numeric Clustering
To Hunt or To Alert



▶ While we did work with a data scientist to build out this model, there are *many* untested assumptions here:
• That we are including the fields that will get us what we really care about

• That eventstats + stdev is the right way to build a per-entity baseline

• That 5 fields for PCA is the right number for our data source

• That k-means is the right clustering mechanism (between core and MLTK Splunk supports four of them!)

• That 5 clusters is the right number of clusters

• That no scale limits (e.g., max 100k) results are being seen by MLTK

• That 12 IQRs are the "right" number

▶ Ultimately there is no right or wrong answer to most of these things, but there are "more right" or "more wrong" answers. 
By leveraging resources available, we were able to come up with something that seems reasonable, but ultimately it 
depends on your data and whether you’re getting valuable results. Much like with the discussion in Time Series Analysis, 
with Security we are not trying to get extreme precision; we’re trying to get in the general ballpark so that we can then 
focus on the things we most care about. That means that some room for error is absolutely expected. 

▶ However, when building out very generalizable scenarios, we recommend leveraging the work of actual data scientists. In 
the Splunk universe, that means Splunk UBA. You can then focus your efforts on building out use cases that aren’t 
universal to everyone. 

Technique: Machine Learning Toolkit Numeric Clustering
Downsides to Building It Yourself



▶ For time series data you often want to build a baseline over some period of time and have that baseline update 
(scheduled search)
• | stats avg() as AVG stdev() as STDEV var() as VAR etc by date_hour,date_mday,ID |outputlookup mybaseline.csv

• (advanced) maintain list of holidays as date_mday,isHoliday

• (advanced) remove outliers

• (advanced) repeat with streamstats as needed (Span, global=f, current=f etc) , like https://wiki.splunk.com/Community:Plotting_a_linear_trendline with 
streamstats window=100 and you get a rolling R^2 between two time series. Wheeee.

• (advanced) | calculate kurtosis, skewness, etc to represent the shape of the distribution

▶ in another search that you need to have run in a short time (ie not looking over a long window of time)
• | lookup mybaseline.csv date_hour as date_hour date_mday as date_mday ID as ID

• | lookup holidays.csv date_mday as date_mday

• Score the events in your new short time window with the knowledge gained from the past.

▶ Time series from MLTK
• |fit linearregression | eval comment="Use the time fields in splunk as features!" | fields - comment

| eval date_mday_as_string= date_mday."_" , comment = "date_* are numbers, but we want them treated as categorical strings" | fields - comment
| eval date_hour_as_string = date_hour."_" , comment = "date_* are numbers, but we want them treated as categorical strings" | fields - comment
| fit LinearRegression Thing from fields, date_mday, date_hour_as_string, date_mday_as_string

• or cluster to find behaviors through time that are similar or not.

Technique: Machine Learning Toolkit Numeric Clustering
Other Ideas around MLTK from our ML Experts



Technique: Machine Learning Toolkit Numeric Clustering
Data Reduction

238,000,000
Events on 

Disk

141,000
Per User Per 

Day Rows

262 
Anomalous 

Per User Per 
Day Rows

2.7 million events per day -> 3 anomalies per day

Need more or less? Adjust the number of IQRs
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Now You’re Trained



▶ As Use Case writers get more expert, they tend to move further away from very 
simple use cases into more advanced anomaly detection. As we progress from 
"EventCode=1102" to "dc(servers) > 3 stdev + avg" value is harder to find. 

▶ There are many conceptual approaches to dealing with this, but they all tend to 
boil down to the core idea of a two phase approach. 
• The first phase is to find anomalous activites, which may be good or bad. These are generally 

low confidence, and shouldn’t be sent to the SOC directly.
• The second phase is to aggregate anomalies into something the SOC should view. Call them 

threats, or multi-vector alerts, or whatever you want - I call them threats.

▶ This section lays out how I view and group anomalies vs threats.

Approach to Analytics
What? Not a Technique?



Technical Components of Security Analytics
Alert Aggregation

Alert Creation

Investigation Investigative 
Platform

▶ Analyst Flexibility
▶ Provide access to data analysis solutions
▶ Record historical context for everything

Simpler 
Detection

▶ Rules & Statistics
▶ Quick development
▶ Easy for analysts

ML Based 
Detection

▶ Detect unknown
▶ New vectors
▶ Heavy data science

Threat
Detection

▶ Manage High Volume
▶ Track Entity Relationships
▶ Combination ML + Rules
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Virtually every modern security detection requires some investigation, and always has. As attackers become more 
advanced, detection mechanisms become more advanced, it is critical to advance the investigative platform to keep pace 
with the new needs. The needs for investigation range from ticketing, workflow, large scale log search, the capability to 
ingest all of the data that will later be needed by an investigation, and more. This is the most mature of the range of 
capabilities required for Security Analytics success, and most organizations will have a decent investigative capability 
available. 

While most organizations do have some basis for investigation, technology leaders must note where the key requirements 
differ for Security Analytics. Detections powered heavily by machine learning by definition produce more abstract results 
that junior level analysts have a harder time understanding. Part of the onus for auctioning these events lies with the 
detection logic itself providing as much context as possible to enable action, but additionally the investigative tier must be 
more robust to allow analysts to quickly understand a detection. This includes both the presentation of contextual 
information from the detection logic itself (baseline information, degree of deviation, etc.), but also a capability to more 
quickly explore greater amounts of data, and to have potentially relevant information surfaced.

Newer innovations to support these needs include simpler access to information (faster and more usable dashboards, 
form search, natural language processing), adaptive response capabilities to automate many of the menial tasks (such as 
acquiring forensic details, and automating remediation for predictable categories of events). 

Investigative Tier
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Everyone’s first effort in the world of UEBA is to leverage rules or statistical detections. Basic approaches here are to alert 
if someone prints more than 100 pages, or emails more than ten documents. As organizations mature, they begin 
leveraging per user (or per system, per entity) baselines. This allows them to track if a user who normally prints only a few
pages suddenly starts printing 75 pages - that can be an anomaly for that user, but the person who prints 200 pages a 
day won’t be flagged unless they go far outside their normal baseline. 

These detections are beneficial because they are specific to known threat vectors, and can be quickly created to detect 
future events within the SOC. Just as important, they are simple for security analysts to understand and action.

Within the Splunk Portfolio, the best place for simpler detections is Splunk Enterprise. Splunk customers have been using 
these detections for a decade, and they can be built quickly and easily. Splunk has recently doubled down on this effort 
and released the free Splunk Security Essentials app which delivers 50+ use cases commonly found in UEBA products. It 
is easy for SOC engineers to build out their own use cases leveraging time series analysis, first time seen detections, and 
even other advanced analytics like entropy detection, levenshtein lookalike detection, and more.

Anomaly Detection Tier: Alert Creation - Simpler Detections
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Many organizations have tried and failed in the past to deliver Security Analytics solutions with the simpler detections 
alone - while many quick wins can be attained with these technologies, they ultimately require an extreme operational 
expense due to the technology needs, in addition to an inability to detect novel methods. To compensate for a 
comparatively limited scope in detecting anomalies, teams end up doing extensive hunting, or building many rules via 
professional services to accommodate for scenarios that might be relevant in the future. 

With Machine Learning, you can start detecting tools, techniques, or procedures that you didn’t necessarily know how to 
predict. You can build out far more advanced technique techniques that simply aren’t possible with more basic data 
analysis platforms. With PhD driven data science, the magnitude of detection is substantially greater. 

Importantly, the recent availability of scalable ML detection doesn’t reduce the need for simpler detections, the two 
complement each other. The simpler detections tend to produce higher confidence detections more easily actioned by 
SOC members for known techniques, where the advanced machine learning models can provide a backstop to approach 
detection from a different perspective, finding attackers the simpler detections didn’t know to look for.

In the Splunk Security Portfolio, Splunk UBA is a data science platform that can facilitate these advanced anomaly 
detection models. Both with advanced known attack detections such as the HTTP model, that tracks known techniques in 
a way not possible on a lesser data science platform, or the advanced rarity and markovian models that can detect threats 
you didn’t know how to build, Splunk UBA provides the horsepower needed to detect the suspicious actions within your 
environment. 

Anomaly Detection Tier: Alert Creation - ML Based Detections
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The third major component of successful Security Analytics programs is an advanced threat detection capability, 
augmented with Machine Learning. A pre-requisite for this component is that a customer must have a successful 
capability for simpler rules / statistical detections, and for advanced machine learning detections. Effectively, there must 
be something for the threat detection to review.

Once an organization makes the investment in those initial two components, they will need to analyze a large volume of 
anomalous activities. It is inherent in anomaly detection technologies that there will be a great amount of noise. If that is
tuned down, critical events will be missed. The solution to this is to have a second level of rules and machine learning that
sits on top of the anomalies to aggregate useful events into threats. Many legacy products in this space have deployed 
simple rule based logic, or surfaced the users with the greatest number of threats, but these naïve approaches are 
insufficient.

For Splunk’s Security Portfolio, Splunk UBA runs a set of machine learning powered threat models over the collection of 
anomalies, to surface the threats that need to be reviewed by the SOC. Even that alone is not enough - to do threat 
detection successfully, you also need to understand the relationships between every entity in the environment. This graph 
mining is a key conceptual advantage of Splunk UBA’s threat models over what can be done by Splunk users directly. 

Anomaly Detection Tier: Alert Aggregation
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– Risky behavior detection
– Entity profiling, scoring
– Kill chain, graph analysis

Splunk Security Portfolio

Enterprise Security
Response

• OOB key security metrics

• Incident response workflow
• Adaptive response

Splunk Enterprise
Detection

Realm of 
Known

Human-driven

Splunk UBA
Detection

Realm of 
Unknown

ML-driven

• Log Aggregation

• Splunk Security Essentials
• Rules, statistics, correlation
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End to End Searches
Welcome to the Full Picture



▶ "I need to know if my XYZ logs stop coming in"
▶ "ABC Malware shuts off our AV product and Windows Updates, how do I detect 

that?"

▶ Splunk users routinely need to monitor for log sources being shut off. This is 
typically done at both the global level (do we have latency on PAN logs) and also 
on a per host basis (are we getting Windows Logon events but no EDR events).

Search: When Log Sources Go Quiet
Background and Challenges



▶ Here we use a lot of tstats and stats to detect if just the Windows Security log 
goes offline for a host.

Search: When Log Sources Go Quiet
Detecting Individual Sources that Go Quiet

| tstats prestats=t count(host) where index=* groupby host _time 
span=1d 

| tstats prestats=t append=t count where index=* 
sourcetype=win*security by host  _time span=1d 

| stats count(host) as all_logs count as win_logs by host _time 
| eval win_perc=round(100*(win_logs / all_logs), 2) 
| stats count as num_data_samples

avg(eval(if(_time<relative_time(maxtime, "-1d@d"), win_perc,
null))) as avg

sum(eval(if(_time<relative_time(maxtime, "-1d@d") AND 
win_perc=0, 1, null))) as past_instances_of_no_logs

max(eval(if(_time>=relative_time(maxtime, "-1d@d"), win_perc, 
null))) as latest 

by host 
| where isnotnull(avg) AND num_data_samples>10 AND 
isnull(past_instances_of_no_logs) AND latest=0

We use a couple of tstats tricks to pull in the number 
of log files in general for a host, and the number of 

Windows Security logs

Stats allows us to track the baseline per host

Eval calculates the percentage of Windows Security

Finally, where allows us to look for new instances of 
no Win Security logs



▶ Here we look across the board for a particular host, and compare the typical time 
gap between periods of logs. Then we alert for excessive gaps.

Search: When Log Sources Go Quiet
Detecting Hosts That Go Quiet

| tstats count where index=* by host _time span=4h 

| streamstats window=2 range(_time) as timediff by host 

| stats count max(timediff) as max_timediff avg(timediff) as avg_timediff
stdev(timediff) as stdev_timediff max(_time) as latest by host 

| eval currentlag = now() - latest 

| where currentlag > avg_timediff*2 + stdev_timediff*6 AND count>12 

| eval currentlag_in_hours=round(currentlag/3600,2)

Then we use stats to pull the average, stdev, and 
number of data samples.

Streamstats will pull the diff

Finally, let’s format this stuff.

Here tstats is giving us the number of events quickly, 
grouped by four hour chunks, ordered by host

Then we calculate the current lag

Then we filter for hidden events. 



▶ Many SOC Customers I work with have a dashboard that SOC analysts can go to 
to get the status of the different log sources. The goal is to let everyone know if 
all of a sudden Palo Alto Networks logs are delayed.

▶ These dashboards typically have a series of boxes with Green / Yellow Red 
indicators for each data source.

▶ Many customers have even
begun using ITSI to track their
data source pipelines.

Here’s a screenshot of a POC
at one customer.

Search: When Log Sources Go Quiet
Broader Dashboard Support



▶ In Splunk Security Essentials we have any example of the earlier query
1. Download the app off Splunkbase
2. Open up Hosts Where Security Sources Go Quiet
3. Click "Show SPL" to see the SPL

Search: When Log Sources Go Quiet
Working Example



© 2017  SPLUNK INC.

1. Watch the earlier Ninjutsus when you get 
home: dvsplunk.com or conf.splunk.com

2. Grab the PDF Version of this deck and 
dig in deeper
Hey, you’re on the PDF version. Look at 
you, ahead of the game! You should go 
watch the video though - conf.splunk.com
5-6 weeks after conf.

3. Grab the app(s) and explore examples

This is where the 
subtitle goes

Key 
Takeaways 
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Don't forget to rate this session in the 
.conf2017 mobile app

Thank You

I get to come back if 
you give me good 
ratings. Rate high, 
early, and often!


