
Splunk Helping in Productivity

Sumit Nagal | Principal Engineer , Intuit | @sumitnagal

27-Sept-2017| Washington, DC

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

Work

Play

About Me

© 2017 SPLUNK INC.

Agenda

▶ Overview

▶ In Quality

▶ In Development

▶ Key Takeaways

▶ Q &A

▶ Improving Velocity

Overview
Journey with Splunk in productivity

▶ Many Jenkins
▶ Many Splunk
▶ Thousands of build, test and deploy data per day
▶ Splunk only for Application Logs
▶ Collaboration with development Tools challenge
▶ Data is scattered
▶ Splunk is Operation Tool

Overview
Jenkins and Splunk Background

Jenkins App

Velocity

Development

2016-Dec

2017- Mar

2016-July

• Build Optimization
• Splunk maven plugin
• Build Dashboard
• Webinar

• Visibility Jenkins Farm
• Collaboration Tools Integration
• Next Gen Dashboard
• Jenkins App integration

Journey Line
How we started using Splunk for productivity

Operation

Quality

Developer

Management

Quality

2016-Sept

• Splunk Validator
• Jira Validator
• Overops
• Forensic Dashboard

• Splunk App
• Jenkins App
• Conf 2016
• Jenkins Conf

Quality
Quality productivity – pulling data from Splunk

© 2017 SPLUNK INC.

“Scaling the Automation with Quality.”

Quality

​Test Failures

​Root Cause
​Analysis

​Process

​Accountability

​Traceability

​Transparency

​Jira Validator

​Splunk Validator

​Integrated with
​ Test

Problem Opportunity Solution

Quality – Solution
Scaling the Automation with Quality

Test Integration with
Splunk / Jira Validator

Jira/Splunk Validator

12

Test Repo

Test

Pass

Fail

Code Issue

Test IssueFlaky Bucket

ExceptionPerformanceFailure

Close OR update Jira

Open Jira

Splunk Validator JIRA Validator

Splunk Validator JIRA Validator

Engineer

Quality - Solution
Scaling the Automation with Quality

Quality – Performance Time
How we are identity opportunity, reporting and taking action – pulling from Splunk

Quality – Application Error
How we are identity opportunity, reporting and taking action – pulling from Splunk

Development
Developer productivity – pushing data in Splunk

© 2017 SPLUNK INC.

“Making developer 10X Productive.”

Developer

​Build Time

​Build Failures

​Root Cause
​Process

​Visibility

​Problem
​identification

​Self Healing

​Splunk Data
​uploader

​Error
​Categorization

​User contribution

Problem Opportunity Solution

Developer – Solution
Making developer 10X Productive

Build Dashboard, User
contribution system

Splunk Data uploader

Local Build Data

Local Build
Splunk Data Uploader

PR Build

CI Build

PR Build Data
Splunk Data Uploader

CI Build Data
Splunk Data Uploader

Developer - Solution
Making developer 10X Productive

Engineer

Development - Build Insight
How we are getting build error across developer, PR and CI - pushing to Splunk

Development - Build Insight
How we are getting build error across developer, PR and CI - pushing to Splunk

Development - Build Error Insight
How we are getting build error across developer, PR and CI - pushing to Splunk

Improving Velocity
Improving Velocity – Leveraging Splunk Jenkins App

© 2017 SPLUNK INC.

“If You can’t Measure it, You Can’t
Improve it.”

2016-Jan

2017- Mar

2016-Aug

• Performance Fixes
• Coverage Fix
• Dashboard improvement
• Webinar

• Production roll out
• Visibility Jenkins Farm - SBG
• Collaboration Tools Integration
• Next Gen DashBoard

Journey Line – Jenkins App
How we started using Splunk for productivity

POC

Tools
Instance

Pre prod

Production2016-Sept

• Local Jenkins
• Local Splunk
• Jenkins Conf

• Splunk App
• Jenkins App
• Conf 2016
• 3 instances

Improving Velocity

​Many Data
​Sources

​Identify Gaps

​Right Owner

​Single Source

​Exposing Data

​Define Ownership

​Splunk Jenkins
​App

​Splunk Dashboard

​Integration with
​ Collaboration tools

Problem Opportunity Solution

Improving Velocity– Solution
If You can’t Measure it, You Can’t Improve it

Splunk Jenkins App with
Velocity data

Integration with
Collaboration Tools

Improving Velocity - Design

Velocity - Overall
How we are identity opportunity, reporting and taking action – using Jenkins App

Velocity - Test
How we are identity detail information - using Jenkins App

Velocity – Jenkins App
How we are connecting to Jenkins App

Overall Improvement
Key Takeaways

Scaling the
Automation

Manual to Auto-magic
Context to Core

Measure &
Improve Velocity
Visibility
Ownership /Accountability

Development
Time (from 50+ to 20+ min)

Success (80% to 98%)
Issues(Many to Few)

Data is Key
Collaboration of Data
Integration of Tools

Productivity

Using Splunk to Improve
Splunk’s Build Process

Eddie Shafaq
Splunk Infrastructure
First joined Splunk in August 2011 as a Systems
Administrator. Aided in expanding engineering support in
"exotic operating system" (AIX, HPUX, S390X and
PowerLinux). Served as a member of release
engineering to address operational and infrastructure
support for products team. Currently serving an
infrastructure leadership role around Core Engineering
and Release Engineering services.

Bill Houston
Splunk Infrastructure
Bill started his career as an analog hardware engineer
designing professional recording equipment. Currently
he is a senior release engineer at Splunk working on
improvements to the Jenkins CI systems. Prior to Splunk
he spent 16 years at Adobe working in various roles; the
last four were spent using Jenkins to build and test
Adobe Flash.

▶ Improve Developer Productivity
• Our contribution: Get CI test results to developers faster

The Goal Set by Management

System Before Optimization

The system had 15 dedicated Linux agents to perform continuous
integration testing

Each job ran for approximately 54 minutes, performing a build of
Splunk and running a set of validation tests

That meant it could perform an approximate average of 17 jobs per
hour

Bitbucket Jenkins Bitbucket

Developer/Bitbucket Bitbucket Jenkins Bitbucket

System Before Optimization

The system had 15 dedicated Linux agents to perform continuous
integration testing

Each job ran for approximately 54 minutes, performing a build of
Splunk and running a set of validation tests

That meant it could perform an approximate average of 17 jobs per
hour

Bitbucket Jenkins Bitbucket

Developer/Bitbucket Bitbucket Jenkins Bitbucket

System Before Optimization
If more than 17 triggers were received in a one hour period the excess
triggers were queued waiting for a Linux agent to run on

Under “normal” circumstances the system operated with minimum
delays, however during peak load periods when the pressure on
developers was the highest…

We experienced significant delays resulting in frustration and phone
calls as the engineers waited for results of the validation test jobs they
were required to run before they could commit thier work

It was Obvious

We Needed To Speed Things Up!

Robert Hight runs a record
339.83 MPH at Sonoma Raceway

July 2017

Our Analysis

Our Analysis
Understanding the Situation

There were four factors that affected the delay developers experienced
while waiting for test results

• Build time – how long it takes to build the Splunk executables
• Test time – how long it takes to perform the required set of tests
• Queue time – how long before the test actually started to run
• Notification – how long before developers know the test results

We need to quantify each of those factors and determine what we
could do to mitigate their effects on the overall time

How We Collected The Data
Our jobs are well connected to Splunk

HTTP Event Collector

Build Agent

Build

Jenkins Master

Splunk Indexer

Plugin

Jenkins
App

The Splunk Plugin for Jenkins
Makes it Easy to Send Your CI/CD Data to Splunk

https://wiki.jenkins.io/display/JENKINS/Splunk+
plugin+for+Jenkins

The Splunk Plugin for Jenkins
Easy to install

The Splunk Plugin for Jenkins
Easy to install

The Splunk Plugin for Jenkins
Easy to customize

The Splunk HTTP Event Collector
Simple to send custom data to your Splunk instance

In Bash

Format your data as a JSON string:
jsonData="{\"time\": 12345, \"index\": \"YourIndex\", \"sourcetype\": \"YourSourceType\", \"source\":
\"YourSource\", \"event\": \{\"YourFieldName\": \"SomeData\", more json formatted data goes here}}”
Include as much json formatted information as you need in the event section

Then execute a curl call:
curl \
--tlsv1.2 --header "Authorization: <Splunk_auth_token_goes_here>" \
--header "Content-Type: application/json" \
--request 'POST' \
--data $jsondata \

https://YourSplunkInstance/services/collector/event

Its that simple…

Insert your own screenshot here.
For best results, use an image sized at 1450 x 850

Queue Times Before Optimization
Peak load period had significant delays

150 minutes!

The Search We Use to Analyze Jobs
Of course this won’t work for you, but…

index="jenkins_console" host=”aJenkins.ourco.com" source="*Linux_ut_pr*" ("make -j48 || exit 0" OR
"Install the project..." OR "Core build is done" OR "run the tests again" OR "Starting backend unit
tests" OR "Package and publish Splunk" OR "starting Linux 64 test" OR "fetch the jenkins scripts
directory" OR ("nodes run >>>> STARTING ACTION" AND "Write splunk-version.txt") OR
("STARTING COMMAND" AND "Running the contrib command") OR "Done all requested steps") | rex
field=source "job/Pull_Request_Tests/job/Linux_ut_pr/(?<build_number>.*)/console" | eval
buildStep=case(searchmatch("fetch the jenkins scripts directory"),"start", searchmatch("starting Linux
64 test"),"clone", searchmatch("Running the contrib command"),"chroot", searchmatch("Write splunk-
version.txt"),"contrib", searchmatch("make -j48 || exit 0"),"setup", searchmatch("Core build is
done"),"build_1", searchmatch("Install the project..."), "build_2", searchmatch("Starting backend unit
tests"), "package", searchmatch("run the tests again"), "tests_1", searchmatch("Package and publish
Splunk"), "tests_2", searchmatch("Done all requested steps"), "publish") | chart values(_time) by
build_number, buildStep | eval gc = round(('clone' - 'start')/60) |eval cs = round((chroot -
'clone')/60) | eval "cb" = round((contrib - chroot)/60) | eval "bs" = round((setup - contrib)/60) |
eval "cub" = round((build_1 - setup)/60) | eval "cbc" = round((build_2 - build_1)/60) | eval "ts" =
round((package - build_2)/60) | eval "pst" = round((tests_1 - package)/60) | eval "sst" =
round(('tests_2' - 'tests_1')/60) | eval "pub" = round(('publish' - 'tests_2')/60) | search cb < 5
| search sst > 0 | search pst < 25 |chart values(pub) as Publishing, values(sst) as "Sequential
Smoke Tests", values(pst) as "Parallel Smoke Tests", values(ts) as "Test Setup", values(cbc) as "Core
Build Continues", values(cub) as "Core and UI build", values(bs) as "Build Setup", values(cb) as
"Contrib Build", values(cs) as "Chroot Setup", values(gc) as "Git Clone" by build_number

The Search We Use to Analyze Jobs
Collect the specific log file lines we will use in our analysis

index="jenkins_console" host=" aJenkins.ourco.com
" source="*Linux_ut_pr*" ("make -j48 || exit 0" OR
"Install the project..." OR "Core build is done" OR
"run the tests again" OR "Starting backend unit
tests" OR "Package and publish Splunk" OR "starting
Linux 64 test" OR "fetch the jenkins scripts
directory" OR ("nodes run >>>> STARTING ACTION" AND
"Write splunk-version.txt") OR ("STARTING COMMAND"
AND "Running the contrib command") OR "Done all
requested steps")

The Search We Use to Analyze Jobs
Extract the job number

| rex field=source
"job/Pull_Request_Tests/job/Linux_ut_pr/(?<build
_number>.*)/console

The Search We Use to Analyze Jobs
Build a table of time stamps by job number and job step

| eval buildStep=case(searchmatch("fetch the jenkins scripts
directory"),"start", searchmatch("starting Linux 64
test"),"clone", searchmatch("Running the contrib
command"),"chroot", searchmatch("Write splunk-
version.txt"),"contrib", searchmatch("make -j48 || exit
0"),"setup", searchmatch("Core build is done"),"build_1",
searchmatch("Install the project..."), "build_2",
searchmatch("Starting backend unit tests"), "package",
searchmatch("run the tests again"), "tests_1",
searchmatch("Package and publish Splunk"), "tests_2",
searchmatch("Done all requested steps"), "publish")

| chart values(_time) by build_number, buildStep limit=50

The Search We Use to Analyze Jobs
Calculate the deltas between job steps

| eval gc = round(('clone' - 'start')/60) |eval cs
= round((chroot - 'clone')/60) | eval "cb" =
round((contrib - chroot)/60) | eval "bs" =
round((setup - contrib)/60) | eval "cub" =
round((build_1 - setup)/60) | eval "cbc" =
round((build_2 - build_1)/60) | eval "ts" =
round((package - build_2)/60) | eval "pst" =
round((tests_1 - package)/60) | eval "sst" =
round(('tests_2' - 'tests_1')/60) | eval "pub" =
round(('publish' - 'tests_2')/60) | search cb <
5 | search sst > 0 | search pst < 25

The Search We Use to Analyze Jobs
Build the final table with user friendly names for display

|chart values(pub) as Publishing, values(sst) as
"Sequential Smoke Tests", values(pst) as "Parallel
Smoke Tests", values(ts) as "Test Setup",
values(cbc) as "Core Build Continues", values(cub)
as "Core and UI build", values(bs) as "Build
Setup", values(cb) as "Contrib Build", values(cs)
as "Chroot Setup", values(gc) as "Git Clone" by
build_number limit=50

Our Analysis
How long does each step of a job take?

• We used the previous search to chart the time each step took

Replace this with data from before improvement

Our Analysis
How long does each step of a job take?

• We Identified the two portions of the job that took the longest
• The Splunk build (in orange) and the validation tests (in red)

Speeding up the Splunk Build

Physical Machines and
VMs:

12 x 20 Core VMs

• All DistCC Build Clients and servers use
the same build toolchain and chroot

• 15 Build agents

• 12 compile nodes

• DistCC server is used ONLY for compile

• make -j48

Distcc Architecture

▶ 24 Min Build
• make –j 24

• Web UI –j 1

• Optimal 24 core VM
agent

▶ 19 Min Build
• make –j 48

• Web UI –j 1

• Optimal 24 core VM
agent
• 12 DistCC hosts

▶ 8 Min Build
• make –j 48

• Web UI –j 6

• Optimal 24 core VM
agent
• 12 DistCC hosts

DistCC VS Normal Build
Building Splunk with DistCC

24m 19m 8m

Build Time Improvement - Results
Dramatic reduction in the overall build time

24m 19m 8m

DistCC on UI build fix

Build Time Improvement - Results
Dramatic reduction in the core compile time

Speeding up Testing

Our Analysis
Reducing the Build Testing Time

Analysis:
• We sequentially run two different test configurations on build

agents – parallel and sequential
• Parallel tests scheduled across 8 Splunk test instances
• Sequential tests ran one at a time
• We used Splunk to measure the overall timing of each test

configuration as well as the individual tests

Mitigation:
• Nothing could be done about the sequential tests
• Increased the number of parallel test instances to 12 and

measured over a few days
• Increased the number of parallel test instances to 16 and

measured over a few days

8->12 12->16

~23m ~19m ~17m

Increasing Test Parallelization
Improvement in the overall test time as parallel instances were increased

The Final Overall Result
Overall job time reduced to ~35 minutes

• Build time reduced to under 8 minutes
• Test time reduced to under 22 minutes

Managing the Agents

Our Analysis
Breaking Down The Timing

Reducing the Pull Request Queue time
Analysis:

• Developers are only waiting for results from pull request tests
• Triggers on commits to some branches and all pull requests

Mitigation:
• Use more agents for the pull request tests
• Manage the allocation of agents to tasks -> shift resources to

pull requests when the queue starts to climb
• Add 5 “standby agents” with reduced capabilities that are

powered up on demand -> smaller footprint on VM hosts

Our Analysis
Breaking Down The Timing

Reducing the Pull Request Queue time
Analysis:

• Developers are only waiting for results from pull request tests
• Triggers on commits to some branches and all pull requests

Mitigation:
• Use more agents for the pull request tests
• Manage the allocation of agents to tasks -> shift resources to

pull requests when the queue starts to climb
• Add 5 “standby agents” with reduced capabilities that are

powered up on demand -> smaller footprint on VM hosts

Before Optimization
Peak load period –> significant delays

After Optimization
Recent similar trigger conditions

12 minutes!

Improving Notifications

Our Analysis
Speeding up Developer Notification

Analysis:
• Test results only available as comments in pull request UI
• Developers need to go to Bitbucket frequently to check for results
• All employees are connected via Atlassian HipChat

Mitigation:
• Added personal HipChat messages

• On receipt of trigger –> includes the current queue time
• When job is completed –> includes test results

Overall Improvement
Key Takeaways

Parallelize Builds
Improved efficiency in

builds by optimizing
parallelization

DistCC in Build
System
Incorporated DistCC in
build system

Alerting
Developers

Notified Developers about
build and merge status

Parallelize Tests
Improved efficiency in test
by optimizing
parallelization Splunk

Analysis, Alerting and
Reporting

The Search We Used to Analyze Jobs
Here is what the full output of the search we presented earlier looks like

The Jenkins App for Splunk
Seamlessly collect, monitor and analyze Your Jenkins Data

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

Q&A

Appendix
Some reference for above Deck to know more

Splunk – Jenkins Configuration - 1

Splunk – Jenkins Configuration - 2

Splunk/Jira Validator Flow

POM.XML

Test

Configuration

Jira defect

Splunk Configuration

Splunk/Jira Validator Flow

Successful Test

Closed Test

Failed Test

Splunk Data uploader -1

Uploading result After Build

Result in Splunk

Splunk Data uploader - 2

Improving Velocity References

Coverage Process

