
© 2019 SPLUNK INC.

Python Compatibility Dive: Don’t Let
Strings Byte You in the Apps

Principal Software Engineer
Cory Burke

Senior Software Engineer
Samat Jain

During the course of this presentation, we may make forward‐looking statements
regarding future events or plans of the company. We caution you that such statements
reflect our current expectations and estimates based on factors currently known to us
and that actual events or results may differ materially. The forward-looking statements
made in the this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, it may not contain current or
accurate information. We do not assume any obligation to update
any forward‐looking statements made herein.

In addition, any information about our roadmap outlines our general product direction
and is subject to change at any time without notice. It is for informational purposes only,
and shall not be incorporated into any contract or other commitment. Splunk undertakes
no obligation either to develop the features or functionalities described or to include any
such feature or functionality in a future release.

Splunk, Splunk>, Turn Data Into Doing, The Engine for Machine Data, Splunk Cloud,
Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in the
United States and other countries. All other brand names, product names, or
trademarks belong to their respective owners. © 2019 Splunk Inc. All rights reserved.

Forward-
Looking
Statements

© 2019 SPLUNK INC.

© 2019 SPLUNK INC.

1. Python Migration Overview

2. Specifying Python Runtime

3. Upgrading your app
• Readiness Tools
• Are You Affected?
• Getting Started With Migration
• Compatibility Tools
• Nitty Gritty Pitfalls
• Apps Built by Add-on Builder

4. Publishing

5. Resources

6. Q & A

Agenda

© 2019 SPLUNK INC.

FN1172: Python 2.7
End-of-Life:
What it means for your
deployment and apps

Python Compatibility For Admins

Aditya Tammana
Product Manager | Splunk

Go find this deck and talk online!

Learn more

© 2019 SPLUNK INC.

Python Migration
Overview

Admins & Developers

1

© 2019 SPLUNK INC.

1. Python 2.7 is End-of-Life on
January 1, 2020.

2. As an admin, you will need to audit
your environment for 8.0
incompatibilities – especially in apps.

3. As a developer, you will need to
make your app compatible with
Python 2.7 and 3.7.

4. Very soon, we will stop shipping
Python 2.7.

Why Does
This Matter?

© 2019 SPLUNK INC.

1. Enterprise 8.0 ships with Python 2.7 AND
Python 3.7 runtimes

2. Splunk Web (the appserver) is Python 3.7
only. CherryPy 18.x is Python 3 ONLY.

3. Some features have been removed!

What’s
Happening?

© 2019 SPLUNK INC.

8.0 Prerequisites

​Stop Using These

​Advanced XML
• Removed in 8.0
• Deprecated 4 years ago

​Splunk Web Legacy Mode
• appServerPorts=0 in web.conf
• Deprecated 3 years ago

​Update These to Support Python 3.7

​Custom CherryPy Endpoints
• AKA custom web controllers
• Make dual-compatible for easier upgrades

​Custom Mako Templates
• Python can be wrapped in HTML using Mako
• Make dual-compatible for easier upgrades

Do this before upgrading!

© 2019 SPLUNK INC.

Other Supported Python Scripts
Will work with Python 2.7 on Enterprise 8.0

Search Head

Indexer

Scripted/Modular
Inputs

Custom
REST

Endpoints

Scripted
Authentication

Cold to Frozen
Scripts

Custom
Alert

Actions

Custom*
Search

Commands

Scripted*
Lookups

Convert scripted
alerts (deprecated)

*Do not write in Python 3-only syntax!
Will fail if indexer < 8.0

© 2019 SPLUNK INC.

Start now!
When
should we
start
upgrading?

© 2019 SPLUNK INC.

There’s
treasure at
the end of
this, right?

© 2019 SPLUNK INC.

Specifying Python
Runtime

Admins & Developers

2

© 2019 SPLUNK INC.

As a developer, you can specify which
Python runtime to use on a per-script basis.

As an admin, you can specify which Python
runtime to use across an entire instance
(and for scripts in any apps on your
instance).

Why Does
This Matter?

© 2019 SPLUNK INC.

The default runtime in 8.0 is Python 2.7

*Except for Splunk Web (the appserver) and the CLI

What
Should I
Remember?

© 2019 SPLUNK INC.

Specify Python Runtime
​Global Runtime Setting

Default Python 2
• Shipped OOB with 8.0
• All scripts without override will run Python

2

Default Python 3
• All scripts without override will run Python

3

Force Python 3
• All scripts will run Python 3, regardless of

override
• Meant for those with strict support reqs

​Script Runtime Setting
No specification

• Will run version specified globally

Python 2
• Will override any default global setting
• Cannot override default force setting

Python 3
• Will always run Python 3

© 2019 SPLUNK INC.

Upgrading your app:
Readiness Tools

Admins & Developers

3.1

© 2019 SPLUNK INC.

Splunk will provide an Upgrade Readiness
App to help prepare for the move to 8.0.

What’s
Happening?

© 2019 SPLUNK INC.

This app scans all other apps on an
instance for impacted components due

to the Python migration.

In large deployments with dozens of apps,
this is a useful identification tool.

Why Does
This Matter?

© 2019 SPLUNK INC.

Upgrading your app:
Are you affected and
compatibility

Developers

3.2

© 2019 SPLUNK INC.

1. Do you have any of the following?

2. Mako templates

3. CherryPy Controllers/Custom REST
Endpoints

4. Scripted:
• Inputs
• Modular Inputs
• Custom Search Commands
• Authentication
• Lookups
• Alert Action

How Do I
know if I’m
Affected?

© 2019 SPLUNK INC.

1. Do Nothing
• Your app probably won’t work with Splunk 8

2. Port for Python 3 syntax
• Your app will not be backwards compatible
• DO NOT DO THIS UNLESS YOU HAVE NO CHOICE

3. Port for Python 2 and 3 compatibility
• Your app will continue to be backwards compatible
• This is important for mixed version deployments
• Customers can upgrade your app before migration

What do we
do now?

© 2019 SPLUNK INC.

​Enterprise vs. Python
Compatibility

App’s Python
Compatibility

Enterprise Version

2.7 3.72.7 & 3.7

7.x 8.x7.x & 8.x

© 2019 SPLUNK INC.

Upgrading your app:
Getting started with
migration

Developers

3.3

© 2019 SPLUNK INC.

How to get started upgrading your app

​All at once

​In server.conf, set:

​python.version = force_python3

​Restart Splunk.

​Test and fix all the problems.

One component at a time

For each component (e.g. modular
input), set:

python.version = python3

in the stanza for that component.

Restart Splunk.

Text and fix all the problems.

These apply once you have initialized a Splunk 8.0 sandbox

© 2019 SPLUNK INC.

How do I get debug logs?
​Use an $SPLUNK_HOME/etc/log-local.cfg file:
• [splunkd]
category.ModularInputs=DEBUG

[python]
splunk = DEBUG
splunk.appserver = DEBUG
splunk.appserver.controllers = DEBUG
splunk.appserver.controllers.proxy = DEBUG
splunk.appserver.lib = DEBUG
splunk.pdfgen = INFO
splunk.archiver_restoration = INFO

​Enable SplunkWeb startup logging (to splunkd.log) in web.conf. New for 8.0, don’t use in
production!
• appServerProcessLogStderr = true

​Logs go into $SPLUNK_HOME/var/log/web_services.log, web_access.log, python.log,
and splunkd.log

© 2019 SPLUNK INC.

Upgrading your app:
Compatibility tools

Developers

3.4

© 2019 SPLUNK INC.

How do I make code Python 2 and 3 compatible?

Python 2-only code:

from urllib import unquote

Python 3-only code (maybe you ran 2to3):

from urllib.parse import unquote

What it looks like under each Python version

© 2019 SPLUNK INC.

How do I make code Python 2 and 3
compatible?

try: # Python 3

 from urllib.parse import unquote

except ImportError: # Python 2

 from urllib import unquote

“Defensively” code

© 2019 SPLUNK INC.

How do I make code Python 2 and 3 compatible?

Using the six library:

from six.moves.urllib.parse import unquote

Using the future library:

from future.moves.urllib.parse import unquote

Use 2-to-3 helper libraries, e.g. moved library import helper (recommended)

© 2019 SPLUNK INC.

How do I make code Python 2 and 3
compatible?

TODO: Delete this when you no longer care about Python 2

from future.standard_library import install_aliases

install_aliases()

from urllib.parse import unquote

Write “idiomatic” Python 3 with future (Python experts only!)

© 2019 SPLUNK INC.

Automatically fixing code: libraries

​six [recommended]
• One file library, easy to include in your app!
• Heavily used throughout Python community
• Not “idiomatic” Python 3 code, creates hard requirement on six

​future
• Mostly “idiomatic” Python 3 code, does not create hard dependency on future
• Not to be confused with “__future__” built-into Python
• Complex directory structure, can be difficult to include in your app
• Recommended by Python.org
• Used internally in Splunk 8.0

© 2019 SPLUNK INC.

Automatically fixing code: tools
​2to3
• From Python upstream
• Idea: automatically convert Python 2 to Python 3 code
• Doesn’t really work, but introduces concept of “fixers”

​modernize (uses six)
• Builds on 2to3, has fixers has will use the six library

​futurize
• Builds on 2to3, has fixers that use the future library
• Divides fixers into “stage1” and “stage2”
• Used when porting Python 2 to 3 for Splunk 8.0 (to identify problem spots)

© 2019 SPLUNK INC.

Automatically fixing code: fixers
​Use fixers to find fix code automatically or find problem spots

​E.g. Turn all print statements into print functions

$ futurize -f libfuturize.fixes.fix_print_with_import py2.py
RefactoringTool: Refactored py2.py
--- py2.py (original)
+++ py2.py (refactored)
@@ -1 +1,2 @@
-print 'hello world'
+from __future__ import print_function
+print('hello world')
RefactoringTool: Files that need to be modified:
RefactoringTool: py2.py

© 2019 SPLUNK INC.

Automatically fixing code: tips for using
fixers
​Strategy
• Run one fixer at a time
• Test, fix problems
• Commit changes (avoid batching code changes for different fixers together)
• Repeat

​futurize
• “stage1” fixers are likely safe for you to use and let make automated changes, EXCEPT for absolute

import fixer

​Don’t rely on fixers to automatically fix for you. Use to identify problem spots.
• futurize’s “stage2” fixers caused more problems than worth it, took this approach for Splunk 8.0

© 2019 SPLUNK INC.

Supporting Python scripts on Splunk versions
If you *MUST* support older Splunk
•Option 1: Include and use six in your
app [recommended]

•Option 2: Include and use future in your
app. Do not use “past” or “lib2to3”.

•Option 3: Use no helper library,
defensively code everything

Include your own copy--do not rely on
Splunk Enterprise’s copy!

​Latest Splunk 8.0 and latest supported
maintenance releases

​Included libraries:
• future, with working past/lib2to3
•six

​For Python 2.7 in Splunk 8.0, future and
six won’t be upgraded. Locked at future
0.17.1 and six 1.12.0.

Review the Splunk support policy to see which release versions are
supported.

© 2019 SPLUNK INC.

Upgrading your app:
Nitty gritty pitfalls

Developers

3.5

© 2019 SPLUNK INC.

“String” world vs “bytes” world

Text aka “string” world
•Composed of characters, in the
linguistic sense. Like “a” or “喂”

•Python 3, use str()
•Python 2, use unicode(), or str() if only
concerned about ASCII/ANSI

•Use .encode() to convert to bytes world

Binary data aka “bytes” world
•An “encoding” defines what series of
0s and 1s (typically grouped into bytes,
aka C chars) represents a glyph. A
glyph may take more multiple bytes to
represent.

• In ASCII, ‘a’ is 97, 0x61, or 01100001
•Python 3, use bytes(), bytearray()
•Python 2, can use bytes(), bytearray(),
or str()

•Use .decode() to convert to string world

Text vs binary data

© 2019 SPLUNK INC.

Bytes biting you in your Apps

​Python 2, string world and bytes world
can be the same if you’re using ASCII or
ANSI. If you weren’t keeping track of it,
separating the two, in practice, gets
difficult.

Python 3, you must keep track of
whether you’re in string world or bytes
world. They’re incompatible. In
practice, not hard.

Storing binary data as text, or text
as binary data, causes exceptions.

For app compatibility with Splunk 8.0 and all earlier supported versions,
you must code defensively when dealing with strings.

© 2019 SPLUNK INC.

Getting text back from APIs, json.loads()

​json.loads() can take bytes or strings. json.loads() assumes an encoding (UTF-8 for
Splunk’s Python)

​>>> json.loads(b'{"hello": "world"}’)
{'hello': 'world'}

​>>> json.loads('{"hello": "world"}’)
{'hello': 'world'}

© 2019 SPLUNK INC.

Getting text back from APIs, json.dumps()
​json.dumps() ONLY takes strings, no bytes!
​>>> json.dumps({"hello": b"world"})
​Traceback (most recent call last):
​ File "<input>", line 1, in <module>
​ json.dumps({"hello": b"world"})
​ File "/usr/lib/python3.7/json/__init__.py", line 231, in dumps
​ return _default_encoder.encode(obj)
​ File "/usr/lib/python3.7/json/encoder.py", line 199, in encode
​ chunks = self.iterencode(o, _one_shot=True)
​ File "/usr/lib/python3.7/json/encoder.py", line 257, in iterencode
​ return _iterencode(o, 0)
​ File "/usr/lib/python3.7/json/encoder.py", line 179, in default
​ raise TypeError(f'Object of type {o.__class__.__name__} '
​TypeError: Object of type bytes is not JSON serializable

© 2019 SPLUNK INC.

Getting text back from APIs,
simpleRequest

•splunk.rest.simpleRequest makes a REST HTTP request — low level API for any
request

•Always returns bytes - low-level API does not know what response will be
•Caller must convert binary data to text with decode():

​# Works under Python 2 and 3
rest_response_content_raw = splunk.rest.simpleRequest(...)

​if sys.version >= (3, 0):
​ rest_response_content rest_response_content_raw.decode()

​Example: some 3rd party libraries want bytes instead of text, e.g. lxml wants bytes for
XML with an encoding declaration

Any app that uses simpleRequest will be bitten by bytes this way

© 2019 SPLUNK INC.

Why not Unicode everywhere for Python 2 and
3?

• If Python 3’s str() and Python 2’s unicode() are the same, why not use it? i.e. Python 3
str() or Python 2 unicode(), add “u” prefix, everywhere?

• future recommends doing this, as do many Python porting guides and blogs

•Many internal and external Python 2 APIs (configparser, CherryPy) not setup to work
with text world (unicode) strings — blows up horribly!

•Performance with unicode strings on Python 2 slow

•New concept: “native” or “default” string, whatever string type is default on that
version of Python = max compatibility with libraries.

•Defensively code to able to string world or byte world data

Gotcha: The Internet is wrong!

© 2019 SPLUNK INC.

All Platforms UTF-8 Encoding by Default

•You’ll see a lot more encoding from str to bytes and decoding from bytes to str in
Python 3

•We’ve made it so calling encode() and decode() is platform consistent with utf-8,
including Windows

•Pre-splunk 8.0 and Python.org Python 3 encode/decode default for Windows would
be “ANSI”, aka CP-1252. Default for Linux/macOS was “ASCII”. Not the same!

•You MIGHT see file encoding errors! You will have to fix them by fixing the files
themselves.

Gotcha: with notepad.exe comes great responsibility

© 2019 SPLUNK INC.

Loading an ANSI/cp1252 file under Splunk Python
3
​with open(“file-I-saved-in-Notepad.txt”) as fp:
​ lines = fp.readlines()

​2019-08-30 15:23:54,285 ERROR [5d69a1fa42104cdcbd0] error:335 -
Traceback (most recent call last):
​ …

​ File "/opt/splunk/lib/python3.7/shutil.py", line 79, in copyfileobj
​ buf = fsrc.read(length)
​ File "/opt/splunk/lib/python3.7/codecs.py", line 322, in decode
​ (result, consumed) = self._buffer_decode(data, self.errors, final)
​UnicodeDecodeError: 'utf-8' codec can't decode byte 0x93 in position
14045: invalid start byte

© 2019 SPLUNK INC.

Numbers changes: float division by
default

​Python 2:
​>>> 3/2

​1

​Python 3:
​>>> 3/2
1.5

​>>> 3//2
1

​Division now returns float. Audit all places division occurs and decide if it’s actually float
division ‘/’ or int division ‘//’

© 2019 SPLUNK INC.

Whitespace issues
​$./splunk start
Splunk> The IT Search Engine.
Checking prerequisites…

Checking http port [8000]: open
Checking mgmt port [8089]: open
Checking appserver port [127.0.0.1:8065]: open
Checking kvstore port [8191]: open

Traceback (most recent call last):
 File "/opt/splunk/lib/python2.7/site-packages/splunk/clilib/cli.py",

​line 17, in <module>
 import splunk.clilib.cli_common as comm
 File

​"/opt/splunk/lib/python2.7/site-packages/splunk/clilib/cli_common.py",line 528
 cmd = I
 ^
TabError: inconsistent use of tabs and spaces in indentation

​Don’t mix spaces and tabs in the same file! Just follow PEP8

© 2019 SPLUNK INC.

Porting Mako Templates

•You cannot use any community created tools because the Python is embedded in
Mako and HTML

•You should ensure that the Python code is Python 2 and Python 3 compatible

•You’ll have to test Python 2 and 3 compatibility using Splunk 7.x for Python 2 and
Splunk 8 for Python 3

© 2019 SPLUNK INC.

Apps Built By Add-on
Builder

Developers

3.6

© 2019 SPLUNK INC.

1. Coming soon!

2. Add-On Builder will be able to produce
Python 3 apps from your existing
projects!

Add-On
Builder
Python 3
Apps

© 2019 SPLUNK INC.

Publishing your app
Admins & Developers

4

© 2019 SPLUNK INC.

Enterprise 8.0 compatibility requires Python
3.7 compatibility. Splunk recommends

making all scripts dual Python 2/3
compatible ASAP.

This will simplify customer upgrades to 8.0.

What
Should I
Remember?

© 2019 SPLUNK INC.

Resources
Admins & Developers

5

© 2019 SPLUNK INC.

FN1172: Python 2.7
End-of-Life:
What it means for your
deployment and apps

Python Compatibility For Admins

Aditya Tammana
Product Manager | Splunk

Go find this deck and talk online!

Learn more

© 2019 SPLUNK INC.

1. Documentation is available, including a
guide covering helpful Python 2 and 3
code porting topics.

2. User group Slack channel #python

3. Splunk answers topic is python3

4. Download Platform Upgrade Readiness
App on Splunkbase

What
Should I
Remember?

© 2019 SPLUNK INC.

6. Q&A
Aditya Tammana | Product Manager
Cory Burke | Principal Software Engineer
Samat Jain | Senior Software Engineer

RATE THIS SESSION
Go to the .conf19 mobile app to

© 2019 SPLUNK INC.

You
!

Thank

