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During the course of this presentation, we may make forward‐looking statements 
regarding future events or plans of the company. We caution you that such statements 
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made in the this presentation are being made as of the time and date of its live 
presentation. If reviewed after its live presentation, it may not contain current or 
accurate information. We do not assume any obligation to update 
any forward‐looking statements made herein. 

In addition, any information about our roadmap outlines our general product direction 
and is subject to change at any time without notice. It is for informational purposes only, 
and shall not be incorporated into any contract or other commitment. Splunk undertakes 
no obligation either to develop the features or functionalities described or to include any 
such feature or functionality in a future release.

Splunk, Splunk>, Turn Data Into Doing, The Engine for Machine Data, Splunk Cloud, 
Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in the 
United States and other countries. All other brand names, product names, or 
trademarks belong to their respective owners. © 2019 Splunk Inc. All rights reserved.
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Python Migration 
Overview

Admins & Developers
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1. Python 2.7 is End-of-Life on 
January 1, 2020.

2. As an admin, you will need to audit 
your environment for 8.0 
incompatibilities – especially in apps.

3. As a developer, you will need to 
make your app compatible with 
Python 2.7 and 3.7.

4. Very soon, we will stop shipping 
Python 2.7.

Why Does 
This Matter?
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1. Enterprise 8.0 ships with Python 2.7 AND 
Python 3.7 runtimes

2. Splunk Web (the appserver) is Python 3.7 
only. CherryPy 18.x is Python 3 ONLY.

3. Some features have been removed!

What’s 
Happening?
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8.0 Prerequisites

​Stop Using These

​Advanced XML
• Removed in 8.0
• Deprecated 4 years ago

​Splunk Web Legacy Mode
• appServerPorts=0 in web.conf
• Deprecated 3 years ago

​Update These to Support Python 3.7

​Custom CherryPy Endpoints
• AKA custom web controllers
• Make dual-compatible for easier upgrades

​Custom Mako Templates
• Python can be wrapped in HTML using Mako
• Make dual-compatible for easier upgrades

Do this before upgrading!
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Other Supported Python Scripts
Will work with Python 2.7 on Enterprise 8.0

Search Head

Indexer

Scripted/Modular 
Inputs

Custom 
REST 

Endpoints

Scripted 
Authentication

Cold to Frozen 
Scripts

Custom 
Alert 

Actions

Custom* 
Search 

Commands

Scripted* 
Lookups

Convert scripted 
alerts (deprecated)

*Do not write in Python 3-only syntax!
Will fail if indexer < 8.0 
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Start now!
When 
should we 
start 
upgrading?
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There’s 
treasure at 
the end of 
this, right?
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Specifying Python 
Runtime

Admins & Developers

2
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As a developer, you can specify which 
Python runtime to use on a per-script basis.

As an admin, you can specify which Python 
runtime to use across an entire instance 
(and for scripts in any apps on your 
instance).

Why Does 
This Matter?
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The default runtime in 8.0 is Python 2.7

*Except for Splunk Web (the appserver) and the CLI

What 
Should I 
Remember?
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Specify Python Runtime
​Global Runtime Setting

Default Python 2
• Shipped OOB with 8.0
• All scripts without override will run Python 

2

Default Python 3
• All scripts without override will run Python 

3

Force Python 3
• All scripts will run Python 3, regardless of 

override
• Meant for those with strict support reqs

​Script Runtime Setting
No specification

• Will run version specified globally

Python 2
• Will override any default global setting
• Cannot override default force setting

Python 3
• Will always run Python 3
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Upgrading your app:
Readiness Tools

Admins & Developers

3.1
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Splunk will provide an Upgrade Readiness 
App to help prepare for the move to 8.0.

What’s 
Happening?
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This app scans all other apps on an 
instance for impacted components due 

to the Python migration.

In large deployments with dozens of apps, 
this is a useful identification tool.

Why Does 
This Matter?
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Upgrading your app:
Are you affected and 
compatibility

Developers

3.2
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1. Do you have any of the following?

2. Mako templates

3. CherryPy Controllers/Custom REST 
Endpoints

4. Scripted:
• Inputs
• Modular Inputs
• Custom Search Commands
• Authentication
• Lookups
• Alert Action

How Do I 
know if I’m 
Affected?
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1. Do Nothing
• Your app probably won’t work with Splunk 8

2. Port for Python 3 syntax
• Your app will not be backwards compatible
• DO NOT DO THIS UNLESS YOU HAVE NO CHOICE

3. Port for Python 2 and 3 compatibility
• Your app will continue to be backwards compatible 
• This is important for mixed version deployments
• Customers can upgrade your app before migration

What do we 
do now?
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​Enterprise vs. Python 
Compatibility

App’s Python 
Compatibility

Enterprise Version

2.7 3.72.7 & 3.7

7.x 8.x7.x & 8.x
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Upgrading your app:
Getting started with 
migration

Developers

3.3
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How to get started upgrading your app

​All at once

​In server.conf, set:

​python.version = force_python3

​Restart Splunk.

​Test and fix all the problems.

One component at a time

For each component (e.g. modular 
input), set:

python.version = python3

in the stanza for that component.

Restart Splunk.

Text and fix all the problems.

These apply once you have initialized a Splunk 8.0 sandbox 
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How do I get debug logs?
​Use an $SPLUNK_HOME/etc/log-local.cfg file:
• [splunkd]
category.ModularInputs=DEBUG

[python]
splunk = DEBUG
splunk.appserver = DEBUG
splunk.appserver.controllers = DEBUG
splunk.appserver.controllers.proxy = DEBUG
splunk.appserver.lib = DEBUG
splunk.pdfgen = INFO
splunk.archiver_restoration = INFO

​Enable SplunkWeb startup logging (to splunkd.log) in web.conf. New for 8.0, don’t use in 
production!
• appServerProcessLogStderr = true

​Logs go into $SPLUNK_HOME/var/log/web_services.log, web_access.log, python.log, 
and splunkd.log
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Upgrading your app:
Compatibility tools

Developers

3.4
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How do I make code Python 2 and 3 compatible?

Python 2-only code:

from urllib import unquote

Python 3-only code (maybe you ran 2to3):

from urllib.parse import unquote

What it looks like under each Python version



© 2019 SPLUNK INC.

How do I make code Python 2 and 3 
compatible?

try:  # Python 3

    from urllib.parse import unquote

except ImportError:  # Python 2

    from urllib import unquote

“Defensively” code
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How do I make code Python 2 and 3 compatible?

Using the six library:

from six.moves.urllib.parse import unquote

Using the future library:

from future.moves.urllib.parse import unquote

Use 2-to-3 helper libraries, e.g. moved library import helper (recommended)
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How do I make code Python 2 and 3 
compatible?

# TODO: Delete this when you no longer care about Python 2

from future.standard_library import install_aliases

install_aliases()

from urllib.parse import unquote

Write “idiomatic” Python 3 with future (Python experts only!)
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Automatically fixing code: libraries

​six [recommended]
• One file library, easy to include in your app!
• Heavily used throughout Python community
• Not “idiomatic” Python 3 code, creates hard requirement on six

​future 
• Mostly “idiomatic” Python 3 code, does not create hard dependency on future
• Not to be confused with “__future__” built-into Python
• Complex directory structure, can be difficult to include in your app
• Recommended by Python.org
• Used internally in Splunk 8.0
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Automatically fixing code: tools
​2to3
• From Python upstream
• Idea: automatically convert Python 2 to Python 3 code
• Doesn’t really work, but introduces concept of “fixers”

​modernize (uses six)
• Builds on 2to3, has fixers has will use the six library

​futurize
• Builds on 2to3, has fixers that use the future library
• Divides fixers into “stage1” and “stage2”
• Used when porting Python 2 to 3 for Splunk 8.0 (to identify problem spots)
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Automatically fixing code: fixers
​Use fixers to find fix code automatically or find problem spots

​E.g. Turn all print statements into print functions

$ futurize -f libfuturize.fixes.fix_print_with_import py2.py                       
RefactoringTool: Refactored py2.py
--- py2.py      (original)
+++ py2.py      (refactored)
@@ -1 +1,2 @@
-print 'hello world'
+from __future__ import print_function
+print('hello world')
RefactoringTool: Files that need to be modified:
RefactoringTool: py2.py
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Automatically fixing code: tips for using 
fixers
​Strategy
• Run one fixer at a time
• Test, fix problems
• Commit changes (avoid batching code changes for different fixers together)
• Repeat

​futurize
• “stage1” fixers are likely safe for you to use and let make automated changes, EXCEPT for absolute 

import fixer

​Don’t rely on fixers to automatically fix for you. Use to identify problem spots.
• futurize’s “stage2” fixers caused more problems than worth it, took this approach for Splunk 8.0
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Supporting Python scripts on Splunk versions
If you *MUST* support older Splunk
•Option 1: Include and use six in your 
app [recommended]

•Option 2: Include and use future in your 
app. Do not use “past” or “lib2to3”.

•Option 3: Use no helper library, 
defensively code everything

Include your own copy--do not rely on 
Splunk Enterprise’s copy!

​Latest Splunk 8.0 and latest supported 
maintenance releases

​Included libraries:
• future, with working past/lib2to3
•six

​For Python 2.7 in Splunk 8.0, future and 
six won’t be upgraded. Locked at future 
0.17.1 and six 1.12.0.

Review the Splunk support policy to see which release versions are 
supported.
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Upgrading your app:
Nitty gritty pitfalls

Developers

3.5
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“String” world vs “bytes” world

Text aka “string” world
•Composed of characters, in the 
linguistic sense. Like “a” or “喂”

•Python 3, use str()
•Python 2, use unicode(), or str() if only 
concerned about ASCII/ANSI

•Use .encode() to convert to bytes world

Binary data aka “bytes” world
•An “encoding” defines what series of 
0s and 1s (typically grouped into bytes, 
aka C chars) represents a glyph. A 
glyph may take more multiple bytes to 
represent.

• In ASCII, ‘a’ is 97, 0x61, or 01100001
•Python 3, use bytes(), bytearray()
•Python 2, can use bytes(), bytearray(), 
or str()

•Use .decode() to convert to string world

Text vs binary data
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Bytes biting you in your Apps

​Python 2, string world and bytes world 
can be the same if you’re using ASCII or 
ANSI. If you weren’t keeping track of it, 
separating the two, in practice, gets 
difficult.

Python 3, you must keep track of 
whether you’re in string world or bytes 
world. They’re incompatible. In 
practice, not hard.

Storing binary data as text, or text 
as binary data, causes exceptions.

For app compatibility with Splunk 8.0 and all earlier supported versions, 
you must code defensively when dealing with strings.
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Getting text back from APIs, json.loads()

​json.loads() can take bytes or strings. json.loads() assumes an encoding (UTF-8 for 
Splunk’s Python)

​>>> json.loads(b'{"hello": "world"}’)
{'hello': 'world'}

​>>> json.loads('{"hello": "world"}’)
{'hello': 'world'}
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Getting text back from APIs, json.dumps()
​json.dumps() ONLY takes strings, no bytes!
​>>> json.dumps({"hello": b"world"})
​Traceback (most recent call last):
​ File "<input>", line 1, in <module>
​   json.dumps({"hello": b"world"})
​ File "/usr/lib/python3.7/json/__init__.py", line 231, in dumps
​   return _default_encoder.encode(obj)
​ File "/usr/lib/python3.7/json/encoder.py", line 199, in encode
​   chunks = self.iterencode(o, _one_shot=True)
​ File "/usr/lib/python3.7/json/encoder.py", line 257, in iterencode
​   return _iterencode(o, 0)
​ File "/usr/lib/python3.7/json/encoder.py", line 179, in default
​   raise TypeError(f'Object of type {o.__class__.__name__} '
​TypeError: Object of type bytes is not JSON serializable
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Getting text back from APIs, 
simpleRequest

•splunk.rest.simpleRequest makes a REST HTTP request — low level API for any 
request

•Always returns bytes - low-level API does not know what response will be
•Caller must convert binary data to text with decode():

​# Works under Python 2 and 3
rest_response_content_raw = splunk.rest.simpleRequest(...)

​if sys.version >= (3, 0):
​    rest_response_content rest_response_content_raw.decode()

​Example: some 3rd party libraries want bytes instead of text, e.g. lxml wants bytes for 
XML with an encoding declaration

Any app that uses simpleRequest will be bitten by bytes this way
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Why not Unicode everywhere for Python 2 and 
3?

• If Python 3’s str() and Python 2’s unicode() are the same, why not use it? i.e. Python 3 
str() or Python 2 unicode(), add “u” prefix, everywhere?

• future recommends doing this, as do many Python porting guides and blogs

•Many internal and external Python 2 APIs (configparser, CherryPy) not setup to work 
with text world (unicode) strings — blows up horribly!

•Performance with unicode strings on Python 2 slow

•New concept: “native” or “default” string, whatever string type is default on that 
version of Python = max compatibility with libraries.

•Defensively code to able to string world or byte world data

Gotcha: The Internet is wrong!
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All Platforms UTF-8 Encoding by Default 

•You’ll see a lot more encoding from str to bytes and decoding from bytes to str in 
Python 3

•We’ve made it so calling encode() and decode() is platform consistent with utf-8, 
including Windows

•Pre-splunk 8.0 and Python.org Python 3 encode/decode default for Windows would 
be “ANSI”, aka CP-1252. Default for Linux/macOS was “ASCII”. Not the same!

•You MIGHT see file encoding errors! You will have to fix them by fixing the files 
themselves.

Gotcha: with notepad.exe comes great responsibility
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Loading an ANSI/cp1252 file under Splunk Python 
3
​with open(“file-I-saved-in-Notepad.txt”) as fp:
​    lines = fp.readlines()

​2019-08-30 15:23:54,285 ERROR   [5d69a1fa42104cdcbd0] error:335 - 
Traceback (most recent call last):
​  …

​  File "/opt/splunk/lib/python3.7/shutil.py", line 79, in copyfileobj
​    buf = fsrc.read(length)
​  File "/opt/splunk/lib/python3.7/codecs.py", line 322, in decode
​    (result, consumed) = self._buffer_decode(data, self.errors, final)
​UnicodeDecodeError: 'utf-8' codec can't decode byte 0x93 in position 
14045: invalid start byte
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Numbers changes: float division by 
default

​Python 2:
​>>> 3/2

​1

​Python 3:
​>>> 3/2
1.5

​>>> 3//2
1

​Division now returns float. Audit all places division occurs and decide if it’s actually float 
division ‘/’ or int division ‘//’
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Whitespace issues
​$ ./splunk start
Splunk> The IT Search Engine.
Checking prerequisites…

Checking http port [8000]: open
Checking mgmt port [8089]: open
Checking appserver port [127.0.0.1:8065]: open
Checking kvstore port [8191]: open

Traceback (most recent call last):
 File "/opt/splunk/lib/python2.7/site-packages/splunk/clilib/cli.py",

​line 17, in <module>
   import splunk.clilib.cli_common as comm
 File

​"/opt/splunk/lib/python2.7/site-packages/splunk/clilib/cli_common.py",line 528
   cmd = I
    ^
TabError: inconsistent use of tabs and spaces in indentation

​Don’t mix spaces and tabs in the same file! Just follow PEP8
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Porting Mako Templates

•You cannot use any community created tools because the Python is embedded in 
Mako and HTML

•You should ensure that the Python code is Python 2 and Python 3 compatible

•You’ll have to test Python 2 and 3 compatibility using Splunk 7.x for Python 2 and 
Splunk 8 for Python 3
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Apps Built By Add-on 
Builder

Developers

3.6
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1. Coming soon!

2. Add-On Builder will be able to produce 
Python 3 apps from your existing 
projects!

Add-On 
Builder 
Python 3 
Apps
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Publishing your app
Admins & Developers

4
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Enterprise 8.0 compatibility requires Python 
3.7 compatibility. Splunk recommends 

making all scripts dual Python 2/3 
compatible ASAP.

This will simplify customer upgrades to 8.0.

What 
Should I 
Remember?
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Resources
Admins & Developers

5
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1. Documentation is available, including a 
guide covering helpful Python 2 and 3 
code porting topics.

2. User group Slack channel #python

3. Splunk answers topic is python3

4. Download Platform Upgrade Readiness 
App on Splunkbase

What 
Should I 
Remember?
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6. Q&A
Aditya Tammana |  Product Manager
Cory Burke |  Principal Software Engineer
Samat Jain |  Senior Software Engineer
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You
!

Thank


