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​This session is a step-by-step 
tutorial on how to use machine 
learning to detect time series 

anomalies.

​Based on real world experiences from a global content 
delivery network provider
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The Scenario
Detecting Anomalies in Network 
Traffic Patterns
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E-commerce Example
▶ Commerce site hosted by CDN
▶ Traffic is analyzed by multiple 

security toolsets
▶ Single highly enriched network 

log generated

Threat Intel Analysis Classification
Customer Goal

▶ Use ML to detect anomalies in 
specific network traffic patterns 
(i.e. bot traffic, DoS attacks, false 
positive/negative conditions)
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Why Use 
Machine 
Learning?
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Technique #1
Simple Spike Detection via Last Hour 
Analysis
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​Search the last 60 minutes of logs for the specific condition

​Set your latest to “-1m@m” to prevent measuring a partial minute

Develop Your Base Search – Part 1

index=mydata condA=0 condB=1 earliest=-61m@m latest=-1m@m
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​Group events into buckets (e.g. “bins”) of time

​A short span (i.e. 1m) will be highly sensitive to short duration spikes

​A long span (i.e. 15m) will be less sensitive to short duration spikes

Develop Your Base Search – Part 2

index=mydata condA=0 condB=1 earliest=-61m@m latest=-1m@m
| bin _time span=1m
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​Count the number of events

​Split by _time and a field that differentiates entities

​Limit your search to one entity. This is useful for visualization and tuning

Develop Your Base Search – Part 3

index=mydata condA=0 condB=1 earliest=-61m@m latest=-1m@m
| bin _time span=1m
| stats count by _time endpoint
| search endpoint=“12345”

Data Quality 
Warning
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What Does This Look Like?
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Source: https://giphy.com/gifs/spaceballs-password-12345-xT0GqJfdLcrcpSbZf2
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Simple Spike Detection = Success
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Operationalize the Alert
​Use the “Show SPL” button and grab the new code
​Search for only outliers 
​Schedule this an an alert

index=mydata condA=0 condB=1 earliest=-61m@m latest=-1m@m
| bin _time span=1m
| stats count by _time endpoint
| search endpoint=“12345”
| streamstats window=20 current=true avg("count") as avg stdev("count") as stdev  by "endpoint"
| eval lowerBound=(avg-stdev*exact(3)), upperBound=(avg+stdev*exact(3))
| eval isOutlier=if('count' < lowerBound OR 'count' > upperBound, 1, 0)
| search isOutlier=1
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Technique #2
Detecting Anomalies with Probability Density 
Functions (PDF)
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​We are now looking for events that 
are abnormal based on history

​Use each endpoints past to learn “normal” on an individual 
basis
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Understanding the Machine Learning 
Process

​Training

​The “learning” part

​Scheduled once per week

​Tuning

​Visualize and tweak

​Optimize the models

​Testing

​The “alerting” part

​Scheduled periodically
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Probability Density Function Basics 
Visualizing a Normal Distribution
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The Empirical Rule
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The Left & Right Boundaries
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Training the Model Based on Time 
Variables
​Time variables are used to train the model
​These allow the model to isolate time into different buckets
​You need a minimum of 5 training points per buckets (30 - 50 recommended)

Example Time Variable How it Trains The Model Minimum Training History
date_minutebin (i.e. 15m) Allows the training to see 0, 15, 30, and 

45 minutes as separate slices of time
5 hours 

date_hour Allows the training to know that hour 1 
and hour 14 are different 

5 days

date_wday Allows the training to differentiate 
between Monday and Saturday

5 weeks
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Training the Model – Part 1
​Adjust the earliest and latest to achieve cardinality

​Consider a longer span. This is to smooth/average the training data

index=mydata condA=0 condB=1 earliest=-36d@d latest=-1d@d
| bin _time span=15m
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Training the Model – Part 2
​Add your time variables

index=mydata condA=0 condB=1 earliest=-36d@d latest=-1d@d
| bin _time span=15m
| eval date_minutebin=strftime(_time, "%M") 
| eval date_hour=strftime(_time, "%H") 
| eval date_wday=strftime(_time, "%A")
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Training the Model – Part 3
​Add back your stats command. 
​Split by all time variables (as well as endpoint)
​We’ll call this the base search on later slides

index=mydata condA=0 condB=1 earliest=-36d@d latest=-1d@d
| bin _time span=15m
| eval date_minutebin=strftime(_time, "%M") 
| eval date_hour=strftime(_time, "%H") 
| eval date_wday=strftime(_time, "%A") 
| stats count by _time date_minutebin date_hour date_wday endpoint
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What Does This Look Like?
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Training the Model – Part 4
​Use the fit command to train your data and store the model
​Allow 5% of the area to be considered anomalous (similar to 2 stdev)
​Manually set the distribution when you have a small training sample

<base search>
| fit DensityFunction count by "date_minutebin,date_hour,date_wday,endpoint" 
into mydensitymodel threshold=0.05 dist=norm
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Testing the Model
​Search a recent time range
​Apply the model and search for outliers
​Schedule as an alert

<base search>
| apply mydensitymodel
| search “IsOutlier(count)”=1
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Visualization and Tuning – Part 1

<your base search>
| apply mydensitymodel
| eval leftRange=mvindex(BoundaryRanges,0)
| eval rightRange=mvindex(BoundaryRanges,1) 
| rex field=leftRange "-Infinity:(?<lowerBound>[^:]*):" 
| rex field=rightRange "(?<upperBound>[^:]*):Infinity" 
| fields _time, count, lowerBound, upperBound, "IsOutlier(count)", *

LowerBound

UpperBound
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Visualization and Tuning – Part 2
Select the Outliers Chart visualization
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Key Takeaways
Best Practices from Real World Testing
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1. Implemented an accelerated data model

2. Replaced base search with TSTATS

3. Achieved 99.7X (not percent) query 
performance increase

Cool Kids Use TSTATS

Performanc
e

| tstats count prestats=true FROM datamodel=MYD.MYD WHERE 
MYD.condA=0 MYD.condB=1 earliest=-61m@m latest=-1m@m BY 
_time MYD.endpoint span=15m
| eval date_minutebin=strftime(_time, "%M") 
| eval date_hour=strftime(_time, "%H") 
| eval date_wday=strftime(_time,"%A")
| stats count by _time date_minutebin date_hour date_wday endpoint



© 2019 SPLUNK INC.

1. Implemented multiple anomaly detection 
techniques (simple spike & PDF)

2. Stored all detections in an anomaly index 

3. Used aggregate analysis to determine 
when scale of anomalies was actionable

Getting Actionable 
Results

Quality



RATE THIS SESSION
Go to the .conf19 mobile app to
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You
!

Thank


