
© 2 0 1 9 S P L U N K I N C .

Richard Morgan
Principal Architect | Splunk

Best practices for
Forwarder Hierarchies

Add your headshot to the circle below by clicking the icon in the center.

During the course of this presentation, we may make forward-looking statements regarding
future events or plans of the company. We caution you that such statements reflect our
current expectations and estimates based on factors currently known to us and that actual
events or results may differ materially. The forward-looking statements made in the this
presentation are being made as of the time and date of its live presentation. If reviewed after
its live presentation, it may not contain current or accurate information. We do not assume
any obligation to update any forward-looking statements made herein.

In addition, any information about our roadmap outlines our general product direction and is
subject to change at any time without notice. It is for informational purposes only, and shall
not be incorporated into any contract or other commitment. Splunk undertakes no obligation
either to develop the features or functionalities described or to include any such feature or
functionality in a future release.

Splunk, Splunk>, Turn Data Into Doing, The Engine for Machine Data, Splunk Cloud, Splunk
Light and SPL are trademarks and registered trademarks of Splunk Inc. in the United States
and other countries. All other brand names, product names, or trademarks belong to their
respective owners. © 2019 Splunk Inc. All rights reserved.

Forward-
Looking
Statements

© 2 0 1 9 S P L U N K I N C .

© 2 0 1 9 S P L U N K I N C .

Spreading that Splunk across EMEA since 2013
Self professed data junkie and SPL addict

CEODog trainer Father

© 2 0 1 9 S P L U N K I N C .

indexers

forwarders

Search heads (you are here!)

A Splunk
installation is
much like an
iceberg, the visible
tip is the indexers,
search heads,
cluster master etc.

© 2 0 1 9 S P L U N K I N C .

Why is event collection tuning important?

Data collection is the foundation of any Splunk instance

Event distribution underpins linear scaling of indexing and search

Events must be synchronized in time to corelate across hosts

Events must arrive in a timely fashion for alerts to be effective

© 2 0 1 9 S P L U N K I N C .

What is event
distribution?

© 2 0 1 9 S P L U N K I N C .

What is Good Event Distribution?

Event distribution is how Splunk spreads its incoming data across multiple indexers

IndexerIndexerIndexerIndexer

Forwarder

25 MB 25 MB 25 MB

100 MB

25 MB

© 2 0 1 9 S P L U N K I N C .

Why is Good Event Distribution important?

IndexerIndexerIndexerIndexer

Search
head

Event distribution is critical for the even distribution of search (computation) workload

10 sec10 sec10 sec10 sec

11 sec
Execution of a search for

a fix time range

© 2 0 1 9 S P L U N K I N C .

What is ‘bad’ Event Distribution?

Bad event distribution is when the spread of events is uneven across the indexers

IndexerIndexerIndexerIndexer

Forwarder

10 MB 10 MB 10 MB

100 MB

70 MB

© 2 0 1 9 S P L U N K I N C .

Bad Event Distribution affects search

IndexerIndexerIndexerIndexer

Search
head

Search time becomes unbalanced, searches take longer to complete and reducing throughput

10 sec10 sec10 sec90 sec

91 sec
Execution of a search for

a fix time range

© 2 0 1 9 S P L U N K I N C .

What is event delay?

© 2 0 1 9 S P L U N K I N C .

What is event delay?

IUF Indexer Search
headUFApp Log file readwrite s2s s2s search

The buffer is
appended to the
log file and the

operating
system notifies
the UF of the

change.

The delta is
read, split up

into 64kb blocks,
compressed and
transmitted with
some additional

meta data

Decodes S2S,
processes,

routes, encodes
S2S, retransmits
streams of data

Decodes S2S
parses events
from streams,

via line breakers,
and time

extraction.
Creates indexes

and writes to
disk

The app needs to
write out log events,

it creates a buffer
and then flushes it

Sends search
request to

indexers, which
open buckets
files and and
gets results

returns them SH

© 2 0 1 9 S P L U N K I N C .

What is good event delay?

It should take between 3-5 seconds from event generation to that event being
searchable

3-5 seconds

IUF Indexer Search
headUFApp Log file readwrite s2s s2s search

© 2 0 1 9 S P L U N K I N C .

How do you calculate event delay?

| eval event_delay=_indextime - _time

The timestamp of
the event is _time

The time of
indexing is
_indextime

The time
of search
is now()

IUF Indexer Search
headUFApp Log file readwrite s2s s2s search

© 2 0 1 9 S P L U N K I N C .

How streams affect
event distribution

© 2 0 1 9 S P L U N K I N C .

autoLBFrequency (outputs.conf)

autoLBFrequency = <integer>
* The amount of time, in seconds, that a forwarder sends data to an indexer
before redirecting outputs to another indexer in the pool.

* Use this setting when you are using automatic load balancing of outputs
from universal forwarders (UFs).

* Every 'autoLBFrequency' seconds, a new indexer is selected randomly from the
list of indexers provided in the server setting of the target group
stanza.

* Default: 30

30 seconds of 1 MB/s is 30 MB for each connection!

© 2 0 1 9 S P L U N K I N C .

Data is distributed across the indexers over time

Each indexer is allocated 30s of data via Randomized Round Robin

© 2 0 1 9 S P L U N K I N C .

earliest=now latest=-90s

Indexer 4 has no data to process

© 2 0 1 9 S P L U N K I N C .

earliest=now latest=-180s

Indexer 4 has 2x the data to process

© 2 0 1 9 S P L U N K I N C .

Event distribution improves over time
Switching at 30 seconds

5 mins = 10 connections
1 hour = 120 connections
1 day = 2880 connections

How long before all indexers have data?

10 indexers = 5 mins
50 indexers = 25 mins
100 indexers = 50 mins

Larger clusters take longer to get “good” event distribution

© 2 0 1 9 S P L U N K I N C .

Event distribution improves over time

time

St
an

da
rd

 d
ev

ia
tio

n
Initially we start connecting to just one
indexer and the standard deviation is high

As time goes to infinity
standard deviation
should trend to zero

Most searches execute over
the last 15mins

St
an

da
rd

 d
ev

ia
tio

n
ac

ro
ss

 in
de

xe
rs

As time passes the standard
deviation improves

© 2 0 1 9 S P L U N K I N C .

It’s not Round Robin (RR), its Randomized RR

Round robin:

Round 1 order: 1,2,3,4

Round 2 order: 1,2,3,4

Round 3 order: 1,2,3,4

Round 4 order: 1,2,3,4

Randomized Round Robin:

Round 1 order: 1,4,3,2

Round 2 order: 4,1,2,3

Round 3 order: 2,4,3,1

Round 4 order: 1,3,2,4

Splunk’s randomized round robin algorithm quickens event distribution

© 2 0 1 9 S P L U N K I N C .

Types of data flows

© 2 0 1 9 S P L U N K I N C .

Types of data flow coming into Splunk
Periodic data, typically a scripted
input, very spikey. Think AWS
CloudWatch, think event delay.

Constant data rates, nice and
smooth, think metrics.

Variable data rates, typically
driven by usage, think web logs

One shot, much like periodic data

It can be difficult to optimize for every type of data flow

© 2 0 1 9 S P L U N K I N C .

Time based LB does not work well on its own

timebasedAutoLB is the default and is set to 30s

© 2 0 1 9 S P L U N K I N C .

autoLBVolume (outputs.conf)

autoLBVolume = <integer>
* The volume of data, in bytes, to send to an indexer before a new indexer
is randomly selected from the list of indexers provided in the server
setting of the target group stanza.

* This setting is closely related to the 'autoLBFrequency' setting.
The forwarder first uses 'autoLBVolume' to determine if it needs to switch to another
indexer. If the 'autoLBVolume' is not reached,
but the 'autoLBFrequency' is, the forwarder switches to another indexer as the

forwarding target.
* A non-zero value means that volume-based forwarding is active.
* 0 means the volume-based forwarding is not active.
* Default: 0

Switching too fast can result in lower throughput

Best practice !!!

© 2 0 1 9 S P L U N K I N C .

autoLBVolume + time based is much better

autoLBVolume is better for variable and bursty data flows

© 2 0 1 9 S P L U N K I N C .

How to measure event
distribution

© 2 0 1 9 S P L U N K I N C .

Call the REST API to get RT ingestion

Excellent

| rest /services/server/introspection/indexer
| eventstats stdev(average_KBps) avg(average_KBps)

© 2 0 1 9 S P L U N K I N C .

Ingestion over time

index=_internal Metrics TERM(group=thruput) TERM(name=thruput)
sourcetype=splunkd

[| dbinspect index=*
| stats values(splunk_server) as indexer
| eval host_count=mvcount(indexer),

search="host IN (".mvjoin(mvfilter(indexer!=""), ", ").")"]
| eval host_pipeline=host."-".ingest_pipe
| timechart minspan=30sec limit=0 per_second(kb) by host_pipeline

Mostly good but some horrid spikes

Too much data being
ingested by a single

indexer

© 2 0 1 9 S P L U N K I N C .

Indexer thruput search explained

index=_internal Metrics TERM(group=thruput) TERM(name=thruput)
sourcetype=splunkd

[| dbinspect index=*
| stats values(splunk_server) as indexer
| eval host_count=mvcount(indexer),

search="host IN (".mvjoin(mvfilter(indexer!=""), ", ").")"]

| eval host_pipeline=host."-".ingest_pipe
| timechart minspan=30sec limit=0 per_second(kb) by host_pipeline

Use TERM to speed up search
execution

Use metrics to get pipeline
statistics

Sub-search returns indexer listMeasures each pipeline individually

© 2 0 1 9 S P L U N K I N C .

Count the events per indexer via job inspector
For any search, open the job inspector and
see how many events each indexer
returned.

This should be approximately the same for
each indexer.

In a multi site or multi cluster environment
we expect that groups of indexers are likely
to have different numbers of events.

Within a single site the number of events
should be the about same for each indexer.

Nice
 and

health
y

© 2 0 1 9 S P L U N K I N C .

Count the events per indexer and index via search

The event distribution
score per index

Count the events per indexer and index via search

© 2 0 1 9 S P L U N K I N C .

Calculate event distribution per index for -5mins
| tstats count where

index=*
splunk_server=*
host=* earliest=-5min latest=now
by splunk_server index

| stats
sum(count) as total_events
stdev(count) as stdev
avg(count) as average
by index

| eval normalized_stdev=stdev/average

Event distribution can be measured per index and per host

Narrow indexes

Narrow to site or cluster

Calculate score

Calculate per index, or host

© 2 0 1 9 S P L U N K I N C .

Shameless self promotion
Use my event distribution measurement dashboard to assess your stack

http://bit.ly/2WxRXvI

http://bit.ly/2WxRXvI

© 2 0 1 9 S P L U N K I N C .

How to configure the event distribution dashboard

4. Set the rate of increase in durations as a power function

1. Select the site or cluster to
analyze

6. Click link to run analysis

5. Click on the number of steps
to generate

2. Select the indexes present in
the selected site or cluster

3. Set starting duration, one
second is the default

© 2 0 1 9 S P L U N K I N C .

How to read the first panel
Variation of events across the indexers

Data received an indexer in -1 secLo
g

sc
al

e
of

 e
ve

nt
s

re
ce

iv
ed

stdev improves as time increases

Each series is a time
range, exponentially

growing.

Each column is an indexer

Data received an indexer in -54 mins

© 2 0 1 9 S P L U N K I N C .

How to read the second panel
Events scanned in each step

Each series is an index

Th
e

nu
m

be
r o

f e
ve

nt
s

re
ce

iv
ed

 (l
og

 s
ca

le
)

After ~8mins indexer received
100k events into index

Each time series plotted on x axis

© 2 0 1 9 S P L U N K I N C .

How to read the third panel
How many indexers received data in time range

All 9 indexers received data into
every index within one second

© 2 0 1 9 S P L U N K I N C .

How to read the final panel
How event distribution is improving over time

3% variation after 5 mins

10% variation after 5 mins > 1% variation after 54 mins

© 2 0 1 9 S P L U N K I N C .

Three hours before all
indexers have data,

need to accelerate to
improve entropy

Randomization is not
happening fast

enough

Incoming data rates for
indexers very different for the

different indexes

© 2 0 1 9 S P L U N K I N C .

Randomization is slow for
most indexes and
plateaus for some

Some indexers are not
getting data, likely

misconfigured
forwarders

© 2 0 1 9 S P L U N K I N C .

One index is not
improving fast

enough

Near perfect event distribution using
intermediate forwarders

© 2 0 1 9 S P L U N K I N C .

Measuring event delay

© 2 0 1 9 S P L U N K I N C .

Use TSTATS to compute event delay at scale

© 2 0 1 9 S P L U N K I N C .

Delay per index and host
Use tstats because indextime as an indexed field!

| tstats max(_indextime) as indexed_time count
where index=*

latest=+1day earliest=-1day
_index_latest=-1sec _index_earliest=-2sec

by index host splunk_server _time span=1s
| eval _time=round(_time), delay=indexed_time-
_time,

delay_str=tostring(delay,"duration")
| eventstats max(delay) as max_delay

max(_time) as max_time
count as eps
by host index

| where max_delay = delay
| eval max_time=_time
| sort - delay

© 2 0 1 9 S P L U N K I N C .

Delay per index and host
| tstats max(_indextime) as indexed_time count where index=*

latest=+1day earliest=-1day _index_latest=-1sec _index_earliest=-2sec

by index host splunk_server _time span=1s

| eval _time=round(_time), delay=indexed_time-_time,

delay_str=tostring(delay,"duration")

| eventstats max(delay) as max_delay

max(_time) as max_time

count as eps

by host index

| where max_delay = delay

| eval max_time=_time

| sort - delay

Get events received in the last
second, irrespective of the delay

max(_indextime) is
latest event

Split by _time to a
resolution of a second

Drop subseconds

Compute the delta

© 2 0 1 9 S P L U N K I N C .

More shameless self promotion
I have a dashboards that use this method to measure delay

http://bit.ly/2R9i4Yx

http://bit.ly/2I8qtIS

http://bit.ly/2R9i4Yx
http://bit.ly/2I8qtIS

© 2 0 1 9 S P L U N K I N C .

How to use the event delay dashboard
Drills down to per host delay

Select indexes to measure

Keep time range short,
but extend to capture

periodic data

translates into
_indextime, not _time

© 2 0 1 9 S P L U N K I N C .

How to read the main panels
By default the results are all for the last second

The average
delay per index

The number of
events received

per index

The maximum
delay per index

The number of
hosts per index

How events are distributed across the cluster

© 2 0 1 9 S P L U N K I N C .

Select an index by clicking on a series
Click on any chart to select an index

Click on a host to drill down

Select period for drill down
Sorted by descending delay

© 2 0 1 9 S P L U N K I N C .

Drill down to host to understand reasons for delay

The number of
events generated
at time, per index

The number of
events

generated at
time, by delay

The number of
events received

at time, per index

The number of
events

received at
time, by delay

© 2 0 1 9 S P L U N K I N C .

The causes of event delay

© 2 0 1 9 S P L U N K I N C .

Congestion
network latency, IO contention, pipeline congestion, CPU saturation, rate limiting

Clock skew
Time zones wrong, clock drift, parsing issue

Timeliness
Histortical load, polling APIs, scripted inputs, component restarts

© 2 0 1 9 S P L U N K I N C .

Congestion: Rate limiting

Rate limiting slows transmission and true event delay occurs

Default maxkbps=256

IUF Indexer Search
headUFApp Log file readwrite s2s s2s search

© 2 0 1 9 S P L U N K I N C .

Congestion: Network

Network saturation acts like rate limiting and causes true event delay

Network congestion

IUF Indexer Search
headUFApp Log file readwrite s2s s2s search

© 2 0 1 9 S P L U N K I N C .

Congestion: Indexer

Excessive ingestion rates, FS IO problems, inefficient regex, inefficient
line breaking cause all cause true event delay

Pipeline
congestion

IUF Indexer Search
headUFApp Log file readwrite s2s s2s search

© 2 0 1 9 S P L U N K I N C .

Timeliness: Scripted inputs

Increase polling frequency to reduce event delay

Polling very x mins means delays
of up to x mins for each

IUF Indexer Search
headUFApp Periodic API read s2s s2s search

© 2 0 1 9 S P L U N K I N C .

Timeliness: Offline components

Restarting forwarders causes brief event delay

Forwarder must be
running or events queue

IUF Indexer Search
headUFApp Log file readwrite s2s s2s search

© 2 0 1 9 S P L U N K I N C .

Timeliness: Historical data

Loading historical data creates fake event delay

Backfilling data
from the past

IUF Indexer Search
headUFApp Log file readwrite s2s s2s search

© 2 0 1 9 S P L U N K I N C .

Clock Skew: Time zones

When time zones aren’t configured correctly event delay measurement is
shifted into the past or future

Time zone A Time zone B

IUF Indexer Search
headUFApp Log file readwrite s2s s2s search

© 2 0 1 9 S P L U N K I N C .

Clock Skew: Drift

Use NTP to align all clocks across your estate to maximize the
usefulness of Splunk

8:00 pm
7:59 pm

When events appear to arrive slightly from
the future or past, this makes time-based

coloration hard

IUF Indexe
r

Searc
h headUFApp Log file readwrite s2s s2s search

© 2 0 1 9 S P L U N K I N C .

Clock Skew: Date time parsing problems

Automatic source typing assumes American date format when ambiguous

Always explicitly set the date time
exactly per sourcetype

IUF Indexer Search
headUFApp Log file readwrite s2s s2s search

© 2 0 1 9 S P L U N K I N C .

Reasons for poor event
distribution

© 2 0 1 9 S P L U N K I N C .

Sticky forwarders
Super giant forwarders

Badly configured intermediate forwarders
Indexer abandonment

Indexer starvation
Network connectivity problems

Single target
Forwarder bugs

TCP back off
maxKBps

Channel saturation
HEC ingestion

© 2 0 1 9 S P L U N K I N C .

Sticky Forwarders

© 2 0 1 9 S P L U N K I N C .

The UF uses “natural breaks” to chunk up logs
10 events 50kb

20 events 80kb

10k events

10MB

10 events 50kb

My logging
application

Logging Semantics:

1. Open file
2. Append to file
3. Close file

We know we have a
natural break each time
the file is closed.

Target
1

Tim
e

Target
2

Target
4

Target
3

Natural break

Natural break

Natural break

EOF

When an application
bursts the forwarder is
forced to “stick” to the

target until the
application generates a

natural break

burst

stuck

© 2 0 1 9 S P L U N K I N C .

The problem is exasperated with IUFs
UF 1

Indexer
1IUF 1

HWF 1
IUF 2

UF 3

Indexer
2

An intermediate universal
forwarder (IUF) works with

unparsed streams and
can only switch away the

incoming stream contains a
break.

Connections can last for
hours and this causes bad

event distribution

UF 2

IUFs cannot afford to be sticky and must switch on time

stuck
stuck

© 2 0 1 9 S P L U N K I N C .

The problem doesn’t exist with an
intermediate HWF

UF 1

Indexer
1HWF 1

HWF 1
HWF 2

UF 3

Indexer
2

The HWF parses data and
forwarder events, not

streams.

HWF can receive
connections from sticky

forwarders causing
throughput problems

UF 2

stuck

Heavy forwarders are generally considered a bad practise

© 2 0 1 9 S P L U N K I N C .

forceTimebasedAutoLB (outputs.conf)

forceTimebasedAutoLB = <boolean>
* Forces existing data streams to switch to a newly elected indexer every

auto load balancing cycle.
* On universal forwarders, use the 'EVENT_BREAKER_ENABLE' and

'EVENT_BREAKER' settings in props.conf rather than
'forceTimebasedAutoLB'

for improved load balancing, line breaking, and distribution of events.
* Default: false

Forcing a UF to switch can create broken events and generate parsing errors

© 2 0 1 9 S P L U N K I N C .

How forceTimeBasedAutoLB works
Splunk to Splunk protocol (s2s) uses datagrams of 64KB

64KB 64KB 64KB 64KB 64KB

Log
sources

current
indexer

next
indexer

64KB

First event Remaining events

30sec

Provided that an events doesn’t succeed a s2s datagram the algorithm works perfectly

We need to switch, but
there is no natural

break!

Send packet to both
assuming that the packet
contains multiple events
and a line break will be

found

Event
boundary

Reads
up to 1st

event

Ignores up
to 1st event

© 2 0 1 9 S P L U N K I N C .

Applying forceTimeBasedAutoLB to IUF

UF 1

Indexer
1IUF 1

HWF 1
IUF 2

UF 3

Indexer
2

The Intermediate
Universal Forwarder
will force switching
without a natural

break.

The indexers no
longer get sticky

sessions!

UF 2

The intermediate forwarders still recieve sticky sessions

© 2 0 1 9 S P L U N K I N C .

EVENT_BREAKER (outputs.conf)

Use the following settings to handle better load balancing from UF.
Please note the EVENT_BREAKER properties are applicable for Splunk Universal
Forwarder instances only.

EVENT_BREAKER_ENABLE = [true|false]
* When set to true, Splunk software will split incoming data with a

light-weight chunked line breaking processor so that data is distributed
fairly evenly amongst multiple indexers. Use this setting on the UF to
indicate that data should be split on event boundaries across indexers
especially for large files.

* Defaults to false

Use the following to define event boundaries for multi-line events
For single-line events, the default settings should suffice

EVENT_BREAKER = <regular expression>
* When set, Splunk software will use the setting to define an event boundary at

the end of the first matching group instance.

EVENT_BREAKER is configured with a regex per sourcetype

© 2 0 1 9 S P L U N K I N C .

EVENT_BREAKER is complicated to maintain on IUF
UF1 – 5 source types

UF1 – 10 source types

UF1 – 20 source types

UF1 – 15 source types

UF1 – 10 source types

UF1 – 5 source types

IUF1
65 source

types

Configure each
sourcetype with

EVENT_BREAKER so
the forwarder doesn’t

get stuck the IUF.

Trying to maintain
EVENT_BREAKER on an
IUF can be impractical due
to aggregation of streams

and source types.

If the endpoints all
implement

EVENT_BREAKER, it
won’t be triggered on the

IUF

forceTimeBasedAutoLB is universal algorithm, EVENT_BREAKER is not

© 2 0 1 9 S P L U N K I N C .

The final solution to sticky forwarders

UF 1

Indexer
1IUF 1

HWF 1
IUF 2

UF 3

Indexer
2

Removal of sticky
forwarders will lower
event delay, improve

event distribution, and
improve search
execution times

UF 2

Configured correctly intermediate forwarders are great for improving event distribution.

Configure EVENT_BREAKER per
sourcetype, use autoLBVolume

Increase autoLBFrequency,
enable forceTimeBasedAutoLB, use

autoLBVolume

© 2 0 1 9 S P L U N K I N C .

Find all sticky forwarders by host name

index=_internal sourcetype=splunkd
TERM(eventType=connect_done) OR
TERM(eventType=connect_close)

| transaction
startswith=eventType=connect_done
endswith=eventType=connect_close
sourceHost sourcePort host

| stats stdev(duration) median(duration) avg(duration) max(duration)
by sourceHost

| sort - max(duration)

Intermediate LB will invalidate results

© 2 0 1 9 S P L U N K I N C .

Find all sticky forwarders by hostname

index=_internal sourcetype=splunkd
(TERM(eventType=connect_done) OR
TERM(eventType=connect_close) OR
TERM(group=tcpin_connections))

| transaction
startswith=eventType=connect_done
endswith=eventType=connect_close
sourceHost sourcePort host

| stats stdev(duration) median(duration) avg(duration) max(duration)
by hostname

| sort - max(duration)

Error prone as it requires that hostname = host

© 2 0 1 9 S P L U N K I N C .

Super Giant Forwarders
a.k.a.

“laser beams of death”

© 2 0 1 9 S P L U N K I N C .

Not all Forwarders are born equal
AWS

Unix
Hosts

Network

Syslog +
UF

HWF

Data
bases

20 MB/s

10 MB/s

5 MB/s

5 MB/s

10 MB/s

30 MB/s
Windows

host
5 KB/s

Windows
host

5 KB/s

Windows
host

5 KB/s

Super giant forwarder make others look like rounding errors

© 2 0 1 9 S P L U N K I N C .

Understanding forwarder weight distribution

Fw
d

1

Fw
d

2

Fw
d

3

Fw
d4 Fw
d5

Reading from left to right

• 0% forwarders = 0% data
• 20% forwarders = 66% data
• 40% forwarders = 73% data
• 60% forwarders = 90% data
• 80% forwarders = 93% data
• 100% forwarders 100% data

We can plot these pairs as an chart to
normalize and compare stacks.

10 MB/s

3 MB/s

1 MB/s

500 KB/s 500 KB/s

Total ingestion is 15 MB/s

© 2 0 1 9 S P L U N K I N C .

Plotting normalized weight distribution

© 2 0 1 9 S P L U N K I N C .

Examples of forward weight distribution

Data imbalance issues can be found on very large stack and must be addressed
10
%

100%

© 2 0 1 9 S P L U N K I N C .

Forwarder weight distribution search
index=_internal Metrics sourcetype=splunkd TERM(group=tcpin_connections) earliest=-4hr latest=now

[| dbinspect index=_*
| stats values(splunk_server) as indexer
| eval search="host IN (".mvjoin(mvfilter(indexer!=""), ", ").")"]

| stats sum(kb) as throughput
by hostname

| sort - throughput
| eventstats sum(throughput) as total_throughput

dc(hostname) as all_forwarders
| streamstats sum(throughput) as accumlated_throughput count

by all_forwarders
| eval coverage=accumlated_throughput/total_throughput,

progress_through_forwarders=count/all_forwarders
| bin progress_through_forwarders bins=100
| stats max(coverage) as coverage

by progress_through_forwarders all_forwarders
| fields progress_through_forwarders coverage

© 2 0 1 9 S P L U N K I N C .

Find super giant forwarders and reconfigure

1. Configure EVENT_BREAKER and / or forceTimeBasedAutoLB

2. Configure multiple pipelines (validate that they are being used)

3. Configure autoLBVolume and / or increase switching speed (keeping an eye on
throughput)

4. Use INGEST_EVAL and random() to shard output data flows

Super giant forwarders need careful configuration

© 2 0 1 9 S P L U N K I N C .

Indexer abandonment

© 2 0 1 9 S P L U N K I N C .

Firewalls can block connections

Indexer A Indexer B Indexer C

Forwarder

Forwarders generate errors when they cannot connect

A common cause for starvation is forwarders only
able to connect to a subset of indexers due to
network problems.

Normally a firewall or LB is blocking the
connections

This is very common when the indexer cluster is
increased in size.

replication

Network
says ”no”

Outputs:
A+B+C

© 2 0 1 9 S P L U N K I N C .

Find forwarders suffering network problems

index=_internal earliest=-24hrs latest=now sourcetype=splunkd
TERM(statusee=TcpOutputProcessor) TERM(eventType=*)
| stats count

count(eval(eventType="connect_try")) as try
count(eval(eventType="connect_fail")) as fail
count(eval(eventType="connect_done")) as done
by destHost destIp

| eval bad_output=if(try=failed,"yes","no")

Search for forwarders logs to find those fail to connect to a target

© 2 0 1 9 S P L U N K I N C .

Incomplete output lists create no errors

Indexer A Indexer B Indexer C

Forwarder

We must search for the absence of connections to find this problem

Forwarders can only send data to targets that
are in their list.

This is very common when the indexer cluster
is increased in size.

Encourage customers to use indexer discovery
on forwarders so this never happens.

replication

Outputs:
B+C

© 2 0 1 9 S P L U N K I N C .

Do all indexers have the same forwarders?
index=_internal earliest=-24hrs latest=now sourcetype=splunkd TERM(eventType=connect_done)
TERM(group=tcpin_connections)

[| dbinspect index=*
| stats values(splunk_server) as indexer
| eval host_count=mvcount(indexer),

search="host IN (".mvjoin(mvfilter(indexer!=""), ", ").")"]
| stats count

by host sourceHost sourceIp
| stats

dc(host) as indexer_target_count
values(host) as indexers_connected_to
by sourceHost sourceIp

| eventstats max(indexer_target_count) as total_pool
| eval missing_indexer_count=total_pool-indexer_target_count
| where missing_indexer_count != 0

Search for forwarders logs to find those fail to connect to a target

This search assumes that all
indexers have the same
forwarders. With multiple

clusters and sites, this might
not be true

© 2 0 1 9 S P L U N K I N C .

Site aware forwarder connections
index=_internal earliest=-24hrs latest=now sourcetype=splunkd TERM(eventType=connect_done) TERM(group=tcpin_connections)

[| dbinspect index=*
| stats values(splunk_server) as indexer
| eval host_count=mvcount(indexer),

search="host IN (".mvjoin(mvfilter(indexer!=""), ", ").")"]
| eval remote_forwarder=sourceHost." & ".if(sourceIp!=sourceHost,"(".sourceIp.")","")
| stats count as total_connections

by host remote_forwarder
| join host

[search index=_internal earliest=-1hrs latest=now sourcetype=splunkd CMMaster status=success site*
| rex field=message max_match=64 "(?<site_pair>site\d+,\"[^\"]+)"
| eval cluster_master=host
| fields + site_pair cluster_master
| fields - _*
| dedup site_pair
| mvexpand site_pair
| dedup site_pair
| rex field=site_pair "^(?<site_id>site\d+),\"(?<host>.*)"
| eventstats count as site_size by site_id cluster_master
| table site_id cluster_master host site_size]

| eval unique_site=site_id." & ".cluster_master
| chart

values(site_size) as site_size
values(host) as indexers_connected_to
by remote_forwarder unique_site

| foreach site*
[| eval "length_<<FIELD>>"=mvcount('<<FIELD>>')]

What sites forwarders connect to which site and what is the coverage for that site?

Sub-search returns
indexer list

Sub-search
computes indexer

to site mapping

© 2 0 1 9 S P L U N K I N C .

Indexer Starvation

© 2 0 1 9 S P L U N K I N C .

What is indexer starvation?

indexer indexer indexer

Forwarder

Indexers must receive data to participate in search

When an indexer or an indexer pipeline
has periods when it is starved of data.

It will continue to receive replicated data
and be assigned primaries by the CM to
search replicated cold buckets.

It will not search hot buckets without site
affinity.

replication

ingestio
n

© 2 0 1 9 S P L U N K I N C .

Smoke test: count connections to indexers
index=_internal earliest=-1hrs latest=now sourcetype=splunkd
TERM(eventType=connect_done) TERM(group=tcpin_connections)

[| dbinspect index=*
| stats values(splunk_server) as indexer
| eval host_count=mvcount(indexer),

search="host IN (".mvjoin(mvfilter(indexer!=""), ", ").")"]
| timechart limit=0 count minspan=31sec by host

This quick smoke test shows if
the indexers in the cluster have
obviously varying numbers of

incoming connections.

When you see banding it either a
smoking gun, or different
forwarder groups per site.

Indexer starvation is guaranteed if
there are not enough incoming

connections.

Fix by increase connections by increasing switching frequency and the
number of pipelines on forwarders

Nice and healthy

© 2 0 1 9 S P L U N K I N C .

Funnel effect reduces connections

When an intermediate forwarder aggregates
multiple streams, it creates a super giant
forwarder.

You need to add more pipelines as each
pipeline creates a new TCP output to the
indexers.

Note that time division multiplexing doesn’t
mean 1 CPU = 1 pipeline, unless it is running at
maximum rate of about 20 MB/s

Apply configuration with care.

indexer indexer indexer

Forwarder

ingestion

FWDFWD FWD FWD FWDFWD

© 2 0 1 9 S P L U N K I N C .

How to instrument and tune IUFs
indexer indexer indexer

Forwarder

FWDFWD FWD FWD FWDFWD

Monitor out going connections
to understand cluster
coverage

Monitor CPU, load average,
pipeline utilization and
pipeline blocking

Find and reconfigure sticky
forwarders to use
EVENT_BREAKER

Monitor active channels to
avoid s2s protocol churn

Monitor incoming
connections to ensure
even distribution of
workload over pipelines

Use autoLBVolume
Enable forceTimeBasedAutoLB
Lengthen
timeBasedAutoLBFrequency

Add up to 16 pipelines but don’t
breach ~30% CPU

Monitor event delay to make
sure it doesn’t increase.

A well tuned intermediate forwarder can achieve 5%
event distribution across 100 indexers within 5mins

RATE THIS SESSION
Go to the .conf19 mobile app to

© 2 0 1 9 S P L U N K I N C .

You!
Thank

