
© 2019 SPLUNK INC.

© 2019 SPLUNK INC.

Using Splunk as an
Essential
Component of a
Continuous
Integration Pipeline
Bill Houston, Eddie Shafaq

During the course of this presentation, we may make forward‐looking statements
regarding future events or plans of the company. We caution you that such statements
reflect our current expectations and estimates based on factors currently known to us
and that actual events or results may differ materially. The forward-looking statements
made in the this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, it may not contain current or
accurate information. We do not assume any obligation to update
any forward‐looking statements made herein.

In addition, any information about our roadmap outlines our general product direction
and is subject to change at any time without notice. It is for informational purposes only,
and shall not be incorporated into any contract or other commitment. Splunk undertakes
no obligation either to develop the features or functionalities described or to include any
such feature or functionality in a future release.

Splunk, Splunk>, Turn Data Into Doing, The Engine for Machine Data, Splunk Cloud,
Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in the
United States and other countries. All other brand names, product names, or
trademarks belong to their respective owners. © 2019 Splunk Inc. All rights reserved.

Forward-
Looking
Statements

© 2019 SPLUNK INC.

© 2019 SPLUNK INC.

Our Speakers
Our Speakers

Splunk Infrastructure

EDDIE SHAFAQ
Splunk Tooling

BILL HOUSTON

© 2019 SPLUNK INC.

Our Speakers

​Splunk Infrastructure

​Joined Splunk in August 2011 as a
Systems Administrator. Aided in
expanding engineering support in
"exotic operating system" (AIX, HPUX,
S390X and PowerLinux). Served as a
member of release engineering to
address operational and infrastructure
support for products team. Currently
serving in an DevOps role around
Engineering Effectiveness and
Infrastructure Engineering services.

Eddie Shafaq

Splunk Tooling
Bill started his career as an analog
hardware engineer designing
professional recording equipment.
Currently he is a senior release
engineer at Splunk working on
improvements to the Jenkins CI
systems. Prior to Splunk he spent 16
years at Adobe working in various roles;
the last four were spent using Jenkins
to build and test Adobe Flash.

Bill Houston

© 2019 SPLUNK INC.

Agenda

• The Challenge - Give Devs the results of their CI faster
• Overview - Splunk’s CI environment

– Splunk/Jenkins Plug-in

• Investigation - Using Splunk
– Using Splunk - Collecting Build Data
– Build Parallelization
– DistCC, PIGZ
– Test Parallelization
– Multiple test instances

• Notifying Developers
• Jenkins App
• Monitoring Essential Service

Introduction

© 2019 SPLUNK INC.

Introduction
​Multiple critical systems working together
• Some built and hosted internally

• Others consumed as Cloud services

• Diverse data sources

​Need Health & Performance Data (standard troubleshooting)
• CPU/Mem/IO

​Need Application/Service Level Visibility
• Build process

• Test platform

• Storage

​Engineering Productivity
• Test results

• Open stories/tasks/bugs

Why Splunk for CI Use Cases

© 2019 SPLUNK INC.

The Challenge
​Improve Engineering Productivity
• Our contribution: Get CI test results to developers faster

© 2019 SPLUNK INC.

System Before Optimization

The system has 30 dedicated Linux Docker agents to perform
continuous integration testing

Each job ran for approximately 90 minutes, performing a build of
Splunk and running a set of validation tests

That meant it could perform an approximate average of 20 jobs per
hour

Bitbucket Jenkins Bitbucket

Developer/Bitbucket Bitbucket Jenkins Bitbucket

© 2019 SPLUNK INC.

System Before Optimization

​If more than 20 triggers were received in a one hour period the excess triggers were
queued waiting for a Docker agent to run on

​Under “normal” circumstances the system operated with minimum delays, however
during peak load periods when the pressure on developers was the highest…

​We experienced significant delays resulting in frustration and phone calls as the
engineers waited for results of the validation test jobs they were required to run before
they could commit their work

© 2019 SPLUNK INC.

Our Analysis

© 2019 SPLUNK INC.

Our Analysis
Understanding the Situation

There were four factors that affected the delay developers experienced
while waiting for test results

• Build time – how long it takes to build the Splunk executables
• Test time – how long it takes to perform the required set of tests
• Queue time – how long before each phase of the builds start to run
• Notification – how long before developers know the test results

We need to quantify each of those factors and determine what we
could do to mitigate their effects on the overall time

© 2019 SPLUNK INC.

How We Collected The Data
Our jobs are well connected to Splunk

HTTP Event
Collector

Build Agent
Build

Jenkins Master

Splunk Indexer

Plugin

Jenkins
App

© 2019 SPLUNK INC.

Core CI ArchitectureInternal CI Infrastructure - Overview

© 2019 SPLUNK INC.

Core CI Architecturehighlevel

© 2019 SPLUNK INC.

The Splunk Plugin for Jenkins
Makes it Easy to Send Your CI/CD Data to Splunk

https://wiki.jenkins.io/display/JENKINS/Splunk+
plugin+for+Jenkins

© 2019 SPLUNK INC.

The Splunk Extension Plugin for Jenkins
Makes it Easy to Send Your Pipeline Data to Splunk

© 2019 SPLUNK INC.

The Splunk Plugin for Jenkins
Easy to install

© 2019 SPLUNK INC.

The Splunk Plugin for Jenkins
Easy to configure

© 2019 SPLUNK INC.

The Splunk Plugin for Jenkins
Easy to customize

© 2019 SPLUNK INC.

The Splunk Plugin for Jenkins
Makes it Easy to Send Your CI/CD Data to Splunk

https://wiki.jenkins.io/display/JENKINS/Splunk+
plugin+for+Jenkins

© 2019 SPLUNK INC.

The Splunk HTTP Event Collector
Simple to send custom data to your Splunk instance

In Bash

Format your data as a JSON string:
jsonData="{\"time\": 12345, \"index\": \"YourIndex\", \"sourcetype\": \"YourSourceType\",
\"source\": \"YourSource\", \"event\": \{\"YourFieldName\": \"SomeData\", more json formatted data
goes here}}”
Include as much json formatted information as you need in the event section

Then execute a curl call:
curl \
 --tlsv1.2 --header "Authorization: <Splunk_auth_token_goes_here>" \
 --header "Content-Type: application/json" \
 --request 'POST' \
 --data $jsondata \
 https://YourSplunkInstance/services/collector/event

Its that simple…

© 2019 SPLUNK INC.

Insert your own screenshot here.
For best results, use an image sized at 1450 x 850

© 2019 SPLUNK INC.

The old Search We Use to Analyze Jobs
Of course this won’t work for you, but…

index="jenkins_console" host=”aJenkins.ourco.com" source="*Linux_ut_pr*" ("make -j48 || exit 0" OR
"Install the project..." OR "Core build is done" OR "run the tests again" OR "Starting backend unit
tests" OR "Package and publish Splunk" OR "starting Linux 64 test" OR "fetch the jenkins scripts
directory" OR ("nodes run >>>> STARTING ACTION" AND "Write splunk-version.txt") OR
("STARTING COMMAND" AND "Running the contrib command") OR "Done all requested steps") | rex
field=source "job/Pull_Request_Tests/job/Linux_ut_pr/(?<build_number>.*)/console" | eval
buildStep=case(searchmatch("fetch the jenkins scripts directory"),"start", searchmatch("starting Linux
64 test"),"clone", searchmatch("Running the contrib command"),"chroot", searchmatch("Write
splunk-version.txt"),"contrib", searchmatch("make -j48 || exit 0"),"setup", searchmatch("Core build is
done"),"build_1", searchmatch("Install the project..."), "build_2", searchmatch("Starting backend unit
tests"), "package", searchmatch("run the tests again"), "tests_1", searchmatch("Package and publish
Splunk"), "tests_2", searchmatch("Done all requested steps"), "publish") | chart values(_time) by
build_number, buildStep | eval gc = round(('clone' - 'start')/60) |eval cs = round((chroot -
'clone')/60) | eval "cb" = round((contrib - chroot)/60) | eval "bs" = round((setup - contrib)/60) |
eval "cub" = round((build_1 - setup)/60) | eval "cbc" = round((build_2 - build_1)/60) | eval "ts" =
round((package - build_2)/60) | eval "pst" = round((tests_1 - package)/60) | eval "sst" =
round(('tests_2' - 'tests_1')/60) | eval "pub" = round(('publish' - 'tests_2')/60) | search cb < 5 |
search sst > 0 | search pst < 25 |chart values(pub) as Publishing, values(sst) as "Sequential
Smoke Tests", values(pst) as "Parallel Smoke Tests", values(ts) as "Test Setup", values(cbc) as "Core
Build Continues", values(cub) as "Core and UI build", values(bs) as "Build Setup", values(cb) as
"Contrib Build", values(cs) as "Chroot Setup", values(gc) as "Git Clone" by build_number

© 2019 SPLUNK INC.

The NEW Search We Use to Analyze Jobs
Build the final table with user friendly names for display

index="jenkins_statistics" job_name="pr-corebld"
host="jenkins-core-delivery.splunkeng.com"
build_number=* type=completed
"metadata.BRANCH"=current | eval fields =
mvzip('stages{}.name','stages{}.duration') |
mvexpand fields | rex field=fields
"(?<stagePlatName>[^,]+),(?<stageSeconds>[^,]+)" |
rex field=stagePlatName
"(?<plat>[^\n-]+)[\n-](?<stageName>.+)$" | eval
stageMinutes=stageSeconds/60 | timechart span=1d
eval(round(avg(stageMinutes), 2)) by stageName

© 2019 SPLUNK INC.

index="jenkins_statistics" job_name="pr-corebld"
host="jenkins-core-delivery.splunkeng.com"
build_number=* type=completed
"metadata.BRANCH"=current

The NEW Search We Use to Analyze Jobs
Build the final table with user friendly names for display

© 2019 SPLUNK INC.

| eval fields =
mvzip(mvzip('stages{}.name','stages{}.duration'),
'stages{}.start_time')

The NEW Search We Use to Analyze Jobs
Correctly associate each builds stage data

© 2019 SPLUNK INC.

rexpand into stage specific fields with associated time stamps

| mvexpand fields

The NEW Search We Use to Analyze Jobs

© 2019 SPLUNK INC.

Build the final table with user friendly names for display

|rex field=fields
"(?<stagePlatName>[^,]+),(?<stageSeconds>[^,]+)" |
rex field=stagePlatName
"(?<plat>[^\n-]+)[\n-](?<stageName>.+)$" | eval
stageMinutes=stageSeconds/60

The NEW Search We Use to Analyze Jobs

© 2019 SPLUNK INC.

The NEW Search We Use to Analyze Jobs
Build the final table with user friendly names for display

© 2019 SPLUNK INC.

Build the final time chart showing each builds results

| timechart span=1d eval(round(avg(stageMinutes),
1)) by stageName

The NEW Search We Use to Analyze Jobs

© 2019 SPLUNK INC.

Our Analysis
How long does each step of a job take?

• We used the previous search to chart the time each step took

© 2019 SPLUNK INC.

Speeding up the Splunk
Build

© 2019 SPLUNK INC.

Distcc Architecture
Containers: 12 x 20 Core VMs

• All DistCC Build Clients and servers use
the same build toolchain and chroot

• 30 Docker agents

• 12 compile servers

• DistCC server is used ONLY for compile

• make -j80

© 2019 SPLUNK INC.

DistCC VS Normal Build

▶ 24 Min Build
• make –j 24

• Web UI –j 1

• Optimal 24 core VM agent

▶ 8 Min Build
• make –j 48

• Web UI –j 6

• Optimal 24 core VM agent

• 12 DistCC hosts

▶ Building Splunk with DistCC

24m 19m 8m

● 19 Min Build

● make –j 48

● Web UI –j 1

● Optimal 24 core VM agent

● 12 DistCC hosts

19m

© 2019 SPLUNK INC.

Build Time Improvement - Results
Dramatic reduction in the overall build time

24m 19m 8m

DistCC on UI build fix

© 2019 SPLUNK INC.

Speeding up Testing

© 2019 SPLUNK INC.

Our Analysis

​Analysis:
• Based on our previous analysis the backend unit tests were executed in parallel across 16 test instances

on the build agents
• We used Splunk to measure the overall timing of each test configuration as well as the individual tests

​Mitigation:
• Over time we increased the number of parallel test instances from 16 to 40 measuring the overall test

time
• We stopped at 40 parallel tests because the build containers have 48 cores

Reducing the Build Testing Time

© 2019 SPLUNK INC.

Improvement in the overall test time as
parallel instances were increased

© 2019 SPLUNK INC.

Before Optimization
Peak load period – > significant delays

© 2019 SPLUNK INC.

After Optimization
Recent similar trigger conditions

© 2019 SPLUNK INC.

Production release build improvement
with PIGZ

● Production release build
○ 5 Components
○ 10 archives created

● Multicore archiving program
○ Utilizes multiple cores on the

container

● 2x time reduction for packaging

DistCC

DistCC + PIGZ

© 2019 SPLUNK INC.

 Pull Request Build Improvement with
PIGZ

● Pull Request Build build
○ 3 Components
○ 3 archives created

● Multicore archiving program
○ Utilizes multiple cores on the

container

● 2x time reduction for packaging

DistCC

DistCC + PIGZ

© 2019 SPLUNK INC.Splunk Production Build Time
ImprovementsOverall average build time reduced by 50 percent

Initial containerized builds did not use
distcc, and used standard tar
compression: 35 Minute build time

Adding distcc support cut the build
times in half: 16 minute build time

Converting our packaging to use
multiple core compression reduced
packaging time by more than 50
percent (some variation caused by
system loading): 30 minute packaging
time

Chart scale 20 minutes/division

© 2019 SPLUNK INC.

Mid change, 25 tests running in parallel
takes 11.1 minutes

Splunk Pull Request Time Improvements
Overall average running time reduced by 50 percent

Initial test configuration with 16 tests
running in parallel takes 13 minutes

Final test configuration has 40 backend
unit tests running in parallel, with distcc
and pigz performance improvements
takes 10.1 minutes, final total running
time 36 minutes

Chart scale 10 minutes/division

© 2019 SPLUNK INC.

Improving Notifications

© 2019 SPLUNK INC.

Our Analysis

​Analysis:
• Test results only available as comments in pull request UI
• Developers need to go to Bitbucket frequently to check for results

– All employees are connected via Slack

​Mitigation:
• Added personal Slack messages

– On receipt of trigger
– When job is completed –> includes test results

Speeding up Developer Notification

© 2019 SPLUNK INC.

Overall Improvement
Key Takeaways

Parallelize Builds
Improved efficiency in

builds by optimizing
parallelization

DistCC in Build
System
Incorporated DistCC in
build system

Alerting
Developers

Notified Developers about
build and merge status

Parallelize Tests
Improved efficiency in test
by optimizing
parallelization Splunk

Analysis, Alerting and
Reporting

© 2019 SPLUNK INC.

The Jenkins App for Splunk
Seamlessly collect, monitor and analyze Your Jenkins Data

© 2019 SPLUNK INC.

DevOps
•

DevCluster

Artifactory

Jenkins

© 2019 SPLUNK INC.

DevOps
•

DevCluster

Artifactory

Jenkins

© 2019 SPLUNK INC.

DevOps
•

DevCluster

Artifactory

Jenkins

© 2019 SPLUNK INC.

Test, CI & more
•

Golden Branch Health

Test Triage (ARTs)

Code Coverage

PR Cycle Time

© 2019 SPLUNK INC.

Test, CI & more
•

Golden Branch Health

Test Triage (ARTs)

Code Coverage

PR Cycle Time

© 2019 SPLUNK INC.

Test, CI & more
•

Golden Branch Health

Test Triage (ARTs)

Code Coverage

PR Cycle Time

© 2019 SPLUNK INC.

Test, CI & more
•

Golden Branch Health

Test Triage (ARTs)

Code Coverage

PR Cycle Time

RATE THIS SESSION
Go to the .conf19 mobile app to

© 2019 SPLUNK INC.

You
!

Thank

© 2019 SPLUNK INC.

Q&A

