.conf19 splunk>

Smart Factory

Ronald Perzul – Splunk Stefan M. Schroder - Accenture

October 29, 2019

Optional subtitle

Forward-Looking Statements

During the course of this presentation, we may make forward-looking statements regarding future events or plans of the company. We caution you that such statements reflect our current expectations and estimates based on factors currently known to us and that actual events or results may differ materially. The forward-looking statements made in the this presentation are being made as of the time and date of its live presentation. If reviewed after its live presentation, it may not contain current or accurate information. We do not assume any obligation to update any forward-looking statements made herein.

In addition, any information about our roadmap outlines our general product direction and is subject to change at any time without notice. It is for informational purposes only, and shall not be incorporated into any contract or other commitment. Splunk undertakes no obligation either to develop the features or functionalities described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Turn Data Into Doing, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2019 Splunk Inc. All rights reserved.

splunk> .confi9

Executive Overview

Key trends in industry and use case introduction

The Internet of Things (LOT) Landscape

Why Should You Care About "Smart Manufacturing?"

CAPABILITIES

Increased process efficiency and output through data/insight driven process optimization and visibility

Reduced downtime and increased asset utilization through real-time monitoring of assets and predictive maintenance analytics

Increased agility of supply chain planning processes by providing **real time visibility of equipment status and disruptive events** in manufacturing

nNN

 \odot

Increased accuracy and reliability of production processes through realtime process control and automation

Reduced time to market through real-time scheduling of processes

Improve worker safety by automating dangerous processes and monitoring the environment in real-time

EXAMPLE BENEFITS

Cost Reduction

- **10%** reduction in maintenance costs
- 20% downtime reduction

Enhanced Yield

• **30%** reduction in scrap

Improved Productivity

- 50% increase in quality testing productivity using cameras, sensors, and Al
- 90% improvement in defect detection

The Typical Challenges to Address with New Smart Capabilities

CHALLENGES	IMPACT	OPPORTUNITY
Outdated data ingestion tools		Adopt high-performing and scalable ingestion approach for leading analytics
Rigid existing data structures	■ No flexibility to incorporate new ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Stand up agile innovation approach that can rapidly translate data to value for continuous improvement
Data complexity due to manufacturing machine turnover	Ingestion and assessment processes are difficult to navigate , causing siloes	Enhance data models to enable synchronous data flows between industrial infrastructure
Unanticipated machinery breakdowns leading to increased downtime	Production losses and delays leading to increased maintenance costs	ML and advanced analytics to predict and forecast maintenance
Lack of visibility into causes of breakdowns and repair requests	Limited root cause analysis or predictive methods to foresee product failures earlier	Multi-variate predictive methods to optimize production processes in real time
Inefficient testing to assess inadequate production quality levels	Increased root cause detection time, which prevents optimal utilization	Targeted insight-based testing to optimize quality operations

The Case Study: Building The "Smartest" Factory On Planet Earth

THE SITUATION

- Gemstone and crystal manufacturer with global multi billion
 business
- Looking to **reduce production waste** by improving the quality and accuracy of its end-to-end monitoring capabilities
- Facing heterogenous machine park, out-of-date ingestion tools and complicated data structures unable to monitor and analyze large amounts of data in real-time

THE CHALLENGE

- A "Smart Manufacturing" initiative shall deliver a data driven end-toend manufacturing process enabling the full value potential of IoT in manufacturing
- Technical **requirements were immense** beyond any boundaries seen so far:

THE DATA (NON-EXHAUSTIVE)

- Order number
- Material

- Cutting ProgramGeometry Corrections
- Original Geometry
- Machine Corrections
- Machine Measurements

Our Vision: "The Crystal Factory Of The Future"

Predictive Quality

- Defect detection
- QA process efficiency
- Optimize polishing time
- Brand impact
- Traceability / Compliance

Reduce Yield Loss

- Waste reduction
 avoiding scrap
- Reduce handling fees for warranty claims

Predictive Maintenance

- Smart Maintenance
- Scheduling of Repair
- Avoid downtime
- Reduce

maintenance Opex

Our IIoT Taxonomy: "Smart Manufacturing" Architecture

Industrial internet of things (IIOT) and the smart factory

The Approach: Accenture and Splunk Partnering for Next Level IoTAnalytics

٨	spl	splunk Slisten to your data accenture			ire
Industrial Assets	Enginee			Security Analysts	Business Users
Consumer and Mobile Devices	©_ Search	<u>_!</u> Alert	ାର୍ଚ୍ଚ Visualize	Predict	کی Develop
J.C.	splur	k>ente	erprise	splunk	>cloud
от		Lo	Exteri okups/En		1
ıı ڪلح		Asset Info	Maintena Info		

Operating Model

- Combined Splunk / Accenture Team in an engineering partnership approach
- Leveraging onshore / nearshore IoT factory
- Highly integrated team with client's engineering, data science and IT departments

Methodology

- Agile delivery approach
- **MVP approach** to achieve tangible results early
- Joint engineering to stretch boundaries of product performance and scalability

splunk> .conf19

Technical Implementation

Using Splunk for Industrial IoT and external tools

Primer: Introduction to Splunk for Industrial IoT

Splunk's Premium Offering for Industrial IoT

Bundle consisting of:

- Splunk Enterprise
- Machine Learning Toolkit
- OPC TA: Emerging industry standard to onboard data from industrial equipment supported by new Splunk TA
- Industrial Asset Intelligence (IAI): Powerful self-service app integrating glass tables / monitor views with customized metrics workbench functionalities

Technical Building Blocks

3 Focus Areas for Technical Implementation

Data Ingestion and Predictive Model Refresh

- Analyze machine data based on a Ensure real-time data ingestion of all production data and forwarding of data to corporate data lake
- Build and update predictive models

Real Time Data Visualization and Scoring

- Use Splunk as an intermediate layer for real-time dashboards
- Trigger predictive model execution leveraging existing advanced analytics technologies and not MLTK

Self-Service Monitoring and Diagnostics

- Analyze machine data based on a predefined asset hierarchy
- Provide drag and drop access and functionalities for non-IT personnel

Data Ingestion and Predictive Model Refresh

Data Flow

Splunk OPC TA

Core Component for High Volume Data Ingestion

Key Achievements and Benefits

- Subscribe to huge amount of variables
- Achieve sampling intervals down to 8 ms

I nk > App: Splu				
	unk Add-on for OPC ~	Administrator v Messages v Settings v Activity v Help v Find		
Sourc Edit Data	a Source Group	or ×		
ta				
ge ya	Name UAMetrics	טקר		
	Index opc_metrics			
a Sou	HTTP Event Collector			
AMe				
✓Data t	o Collect			
Click the h	odes in the tree and select the data you want to collect. Learn more 🛽			
	Search data Search			
	Server			
	0Demo			
	-BuildingA			
	—StartLogging			
	← Configurations			
	- State			
	- State			
	↓ ■ Temperature			
	- TemperatureSetPoint			
	- Ver PowerConsumption			
	Start			
	6—Stop			
	- V Humidity			
	- HumiditySetpoint			
	∮StartWithSetpoint			
	A show a literature of			

Data Ingestion and Predictive Model Refresh

Technical summary

Real Time Data Visualization and Scoring

splunk'> .conf19

Splunk Search and Reporting App

Provide real-time and historical insights

Key Achievements and Benefits

- Single dashboard showing near real-time sensor data alongside machine corrections
- Enrich with key prediction results like predictive polishing time and predicted quality

Real-time Data Visualization and Scoring

Technical summary

Self-service Monitoring and Diagnostics

Data Flow

Splunk Industrial Asset Intelligence

Key Achievements and Benefits

- Benchmark different assets of the same type
- Identify any discrepancies with regards to operational aspects

///////

Self-service Monitoring and Diagnostics

Technical summary

Create a High Level

Representation of

Compare Several Machines Against Each Other

Use Drag and Drop Interface for In-depth Time-series Analysis

Visually Correlate Information from Different Sources

Wrap-up

Sensor Sensei

Summary and lessons learned

Bridging the Gap from IT to OT

Extend the use of your Splunk environment

- 1. Leverage your existing Splunk investments in infrastructure and people
- 2. Leverage Splunk's investments in emerging technologies like OPC UA and its open architecture
- **3.** Avoid the need for complex IoT architectures and extend the use of Splunk to IoT Analytics
- 4. Achieve fast results and time to value using Splunk's platform capabilities

Lessons Learned

Finding the Right Approach

- 1. Connect with your counterparts from manufacturing or electronics early
- 2. Understand the capabilities of your OPC infrastructure and closely monitor server capacity and performance
- Properly plan, align and test your OPC configuration settings according to your Advanced Analytics requirements
- 4. Adjust your Splunk architecture and configuration if needed

© 2019 SPLUNK INC.

• -

 Γ

 \bigcirc

Thank

Go to the .conf19 mobile app to

RATE THIS SESSION