
© 2 0 2 0 S P L U N K I N C .

© 2 0 2 0 S P L U N K I N C .

TSTATS and
PREFIX
How to get the most out of your lexicon,
with walklex, tstats, indexed fields,
PREFIX, TERM and CASE

Richard Morgan
Principal Architect | Splunk

© 2 0 2 0 S P L U N K I N C .

Principal Architect – Splunk

Richard Morgan

During the course of this presentation, we may make forward‐looking statements regarding
future events or plans of the company. We caution you that such statements reflect our
current expectations and estimates based on factors currently known to us and that actual
events or results may differ materially. The forward-looking statements made in the this
presentation are being made as of the time and date of its live presentation. If reviewed after
its live presentation, it may not contain current or accurate information. We do not assume
any obligation to update any forward‐looking statements made herein.

In addition, any information about our roadmap outlines our general product direction and is
subject to change at any time without notice. It is for informational purposes only, and shall
not be incorporated into any contract or other commitment. Splunk undertakes no obligation
either to develop the features or functionalities described or to include any such feature or
functionality in a future release.

Splunk, Splunk>, Data-to-Everything, D2E and Turn Data Into Doing are trademarks and registered trademarks of Splunk Inc. in the United States
and other countries. All other brand names, product names or trademarks belong to their respective owners. © 2020 Splunk Inc. All rights reserved

Forward-
Looking
Statements

© 2 0 2 0 S P L U N K I N C .

Averaging one slide very 45s

=

=

© 2 0 2 0 S P L U N K I N C .

The Key to Productivity Is
Work Avoidance

i.e. don’t do work you don’t have to do

© 2 0 2 0 S P L U N K I N C .

Search Performance Underpins Everything

Faster loading dashboards
• User experience is improved with faster completing

searches
• User productivity improves as run \ test cycles are

accelerated

Better performance enables more use
cases
• Improvements of x10 and x100 allow users to attack

new problems
• Examine weeks and months of data, instead of just

hours and minutes

Reduces the need for precomputation
(summaries)
• Summaries should be used to reduce load, not

accelerate slow searches

Reduced server load
• Support more users on less hardware
• Improves ROI on hardware investment

Search load is the biggest factor in sizing Splunk (not ingestion)

© 2 0 2 0 S P L U N K I N C .

Search Performance Underpins Everything

Faster loading dashboards
• User experience is improved with faster completing

searches
• User productivity improves as run \ test cycles are

accelerated

Better performance enables more use
cases
• Improvements of x10 and x100 allow users to attack

new problems
• Examine weeks and months of data, instead of just

hours and minutes

Reduces the need for precomputation
(summaries)
• Summaries should be used to reduce load, not

accelerate slow searches

Reduced server load
• Support more users on less hardware
• Improves ROI on hardware investment

Search load is the biggest factor in sizing Splunk (not ingestion)

Reduction in HW costs

© 2 0 2 0 S P L U N K I N C .

Minimize Work: Select indexes
index=search_demo* selects directories starting with search_demo

(base) rmorgan-mbp-4cb4b:splunk rmorgan$ ls -al
total 824
drwx------ 252 rmorgan wheel 8064 31 Aug 11:33 .
drwx--x--- 4 rmorgan wheel 128 24 Nov 2019 ..
-rw-r--r--@ 1 rmorgan wheel 12292 22 Jul 11:09 .DS_Store
-rw------- 1 rmorgan wheel 0 31 Aug 11:10 .dirty_database
-rw------- 1 rmorgan wheel 3 31 Aug 11:10 _audit.dat
-rw------- 1 rmorgan wheel 3 31 Aug 11:10 _internal.dat
drwx------ 7 rmorgan wheel 224 24 Nov 2019 _internaldb
drwx------ 6 rmorgan wheel 192 18 Oct 2019 _introspection
-rw------- 1 rmorgan wheel 3 31 Aug 11:11 _introspection.dat
drwx------ 6 rmorgan wheel 192 20 Nov 2019 _metrics
-rw------- 1 rmorgan wheel 3 31 Aug 11:10 _metrics.dat
drwx------ 6 rmorgan wheel 192 22 Jul 10:34 _metrics_rollup
drwx------ 6 rmorgan wheel 192 18 Oct 2019 _telemetry
-rw------- 1 rmorgan wheel 2 31 Aug 11:20 _telemetry.dat
drwx------ 6 rmorgan wheel 192 18 Oct 2019 audit
drwx------ 2 rmorgan wheel 64 18 Oct 2019 authDb
drwx------ 6 rmorgan wheel 192 30 Aug 13:34 defaultdb
drwx------ 9 rmorgan wheel 288 31 Aug 11:42 fishbucket
drwx------ 2 rmorgan wheel 64 18 Oct 2019 hashDb
drwx------ 6 rmorgan wheel 192 31 Aug 11:10 search_demo_1
-rw------- 1 rmorgan wheel 2 31 Aug 11:30 search_demo_1.dat
drwx------ 6 rmorgan wheel 192 31 Aug 11:10 search_demo_2
-rw------- 1 rmorgan wheel 2 31 Aug 11:33 search_demo_2.dat
drwx------ 6 rmorgan wheel 192 18 Oct 2019 summarydb

When we specify indexes in our
search we are narrowing the
directories we wish to access.
This is the highest level of exclusion in
Splunk and it is minimal requirement
for high performance search.
index=* selects all indexes, expect
for those that start with an underscore
(_internal, _audit etc)

© 2 0 2 0 S P L U N K I N C .

(base) rmorgan-mbp-4cb4b:splunk rmorgan$ ls -al search_demo/db/
total 16
drwx------ 25 rmorgan wheel 800 30 Aug 21:04 .
drwx------ 6 rmorgan wheel 192 30 Aug 19:52 ..
-rw------- 1 rmorgan wheel 2904 30 Aug 20:14 .bucketManifest
-rw------- 1 rmorgan wheel 10 30 Aug 19:52 CreationTime
drwx--x--- 2 rmorgan wheel 64 30 Aug 19:52 GlobalMetaData
drwx--x--- 16 rmorgan wheel 512 30 Aug 19:54 db_1598984915_1598812143_60
drwx--x--- 16 rmorgan wheel 512 30 Aug 19:55 db_1598984915_1598984915_61
drwx--x--- 16 rmorgan wheel 512 30 Aug 19:56 db_1598984916_1598984915_62
drwx--x--- 15 rmorgan wheel 480 30 Aug 19:57 db_1598984916_1598984916_63
drwx--x--- 16 rmorgan wheel 512 30 Aug 19:59 db_1598984917_1598984916_64
drwx--x--- 17 rmorgan wheel 544 30 Aug 20:00 db_1598984917_1598984917_65
drwx--x--- 15 rmorgan wheel 480 30 Aug 20:01 db_1598984918_1598984917_66
drwx--x--- 16 rmorgan wheel 512 30 Aug 20:02 db_1598984918_1598984918_67
drwx--x--- 16 rmorgan wheel 512 30 Aug 20:03 db_1598984919_1598984918_68
drwx--x--- 14 rmorgan wheel 448 30 Aug 20:04 db_1598984919_1598984919_69
drwx--x--- 15 rmorgan wheel 480 30 Aug 20:05 db_1598984920_1598984919_70
drwx--x--- 16 rmorgan wheel 512 30 Aug 20:06 db_1598984920_1598984920_71
drwx--x--- 13 rmorgan wheel 416 30 Aug 20:07 db_1598984920_1598984920_72
drwx--x--- 15 rmorgan wheel 480 30 Aug 20:08 db_1598984921_1598984920_73
drwx--x--- 13 rmorgan wheel 416 30 Aug 20:09 db_1598984921_1598984921_74
drwx--x--- 14 rmorgan wheel 448 30 Aug 20:10 db_1598984922_1598984921_75
drwx--x--- 16 rmorgan wheel 512 30 Aug 20:11 db_1598984922_1598984922_76
drwx--x--- 17 rmorgan wheel 544 30 Aug 20:12 db_1598984923_1598984922_77
drwx--x--- 16 rmorgan wheel 512 30 Aug 20:13 db_1598984923_1598984923_78
drwx--x--- 13 rmorgan wheel 416 30 Aug 21:08 hot_v1_79

Minimize Work: Select a timerange
Applying the filter earliest=-20d latest=-10d selects buckets to consider

Each bucket encodes the time
range for the data it holds in
EPOC time.
Therefore when we only consider
bucket that have timestamps that
fall into the time range we have
specified.
Use “dbinpect” allows you
understand this selection process
without executing a full search.

© 2 0 2 0 S P L U N K I N C .

Output: A list of Buckets to consider
Time range + indexes selects buckets that must be processed

considered_buckets

© 2 0 2 0 S P L U N K I N C .

1. Index and time ranges defines
the considered buckets

buckets

buckets
buckets

2. Metadata and bloom
filters eliminate buckets

buckets

buckets
buckets

3. LISPY queries the tsidx to
identify slices to decompress

bucket

bucket
bucket

5. Schema on the fly extracts
and eliminates events

events

events
events

4. Extracts and parse
events from slices

slices

slices
slices

6. Events are processed by
SPL and returned to the SH

events

events
events

Six stages of indexer search processing
The first line of your search
typically represents the greatest
amount of computational effort
required to execute your search.

Making efficient use of the first
line in your search results the
greatest gains and everything
else barely matters

index=<indexes> <constraints>

| <everything else>

© 2 0 2 0 S P L U N K I N C .

Scan Count Vs. Event Count
During execution you see the ratio between scan count and event count

False positive ratio
7 / 312,792
= 99.99%

false matches

😱😱
Horror

Show

Try and eliminate events BEFORE they are
extracted from the raw data, as this avoids the

CPU intensive decompression and parsing
21 seconds
to execute

© 2 0 2 0 S P L U N K I N C .

Early Elimination Improves Performance
By introducing the TERM parameter into our search we have eliminated all false positives

scan_count = event_count

😍😍 🥰🥰
TERM is used in less the 1% of all customer searches executed on Splunk Cloud

© 2 0 2 0 S P L U N K I N C .

The difference is in the LISPY

BEFORE:
• SPL = index=* average=0.9*
• LISPY = [AND 0 9* index::*]

AFTER:
• SPL = index=* TERM(average=0.9*)
• LISPY = [AND average=0.9* index::*]

By introducing TERM we made changed the LISPY to be more precise

LISPY is the search language that
we use to search the lexicon.

The first search looks for any event
that includes all the of the minor
terms 0 9* in any index.

The second looks for any major
term that starts “average=0.9*”
in any index.

MAJOR TERM

© 2 0 2 0 S P L U N K I N C .

Where to MAJOR TERMS Come From?

Splunk has a two-stage
parsing process

Firstly, we break up _raw
with major breakers

Secondly, we apply minor
breakers to the major
breakers

This is configurable in
limits.conf (beware
changing!!!)

Splunk uses a Universal indexing algorithm to tokenize events and write to index

[] < > () { } | ! ; , ' " * \n \r
\s \t & ? + %21 %26 %2526 %3B %7C
%20 %2B %3D -- %2520 %5D %5B %3A
%0A %2C %28 %29

Major breakers

/ : = @ . - $ % \\ _

Minor breakers

© 2 0 2 0 S P L U N K I N C .

Step 1 – Applying MAJOR Breakers

Input string (_raw):
01-27-2020 20:29:22.922 +0000 INFO Metrics - group=per_sourcetype_thruput,
ingest_pipe=0, series="splunkd", kbps=258.6201534528208, eps=1367.6474892210738,
kb=8050.1142578125, ev=42571, avg_age=145747.7853938127, max_age=2116525

Output MAJOR TERM list:
["01-27-2020", "20:29:22.922", "+0000", "info", "metrics", "-",
"group=per_sourcetype_thruput", "ingest_pipe=0", "series=", "splunkd",
"kbps=258.6201534528208", "eps=1367.6474892210738", "kb=8050.1142578125,", "ev=42571",
"avg_age=145747.7853938127", "max_age=2116525”]

How Splunk takes a log line and creates TERMS with major breakers

Notice how all fields other than series= are tokenized into useful TERMS

https://cloudzero-quake.stg.splunkcloud.com/en-US/app/search/search?earliest=-60m%40m&latest=now&q=search%20index%3D_internal%20sourcetype%3Dsplunkd%20per_sourcetype%20%0A%7C%20head%201%20%0A%7C%20rex%20field%3D_raw%20max_match%3D100%20%22(%3F%3Cmajor%3E%5B%5E%5C%5B%5C%5D%3C%3E()%7B%7D%7C!%3B%2C%27%5C%22*%5Cn%5Cr%5Cs%5Ct%5D%2B)%22%20%0A%7C%20table%20_raw%20major%0A%7C%20eval%20output%3D%22%5B%5C%22%22.mvjoin(major%2C%22%5C%22%2C%20%5C%22%22).%22%5D%22&display.page.search.mode=smart&dispatch.sample_ratio=1&display.page.search.tab=statistics&display.general.type=statistics&sid=1580156964.23407

© 2 0 2 0 S P L U N K I N C .

Step 2 – Applying MINOR Breakers

Input array (MAJOR BREAKERS):
• ["01-27-2020", "20:41:20.355", "+0000", "info", ”metrics", "-",

"group=per_sourcetype_thruput", "ingest_pipe=0", "series=", "top",
"kbps=23.83452969239664", "eps=155.64262209891208",
"kb=743.4765625", "ev=4855", "avg_age=145747.7853938127",
"max_age=2116525"]

Output TERMS (MINOR BREAKERS):
• ["0000", ", "thruput","0", "01", "155", "20", "2020", "23", "27", "355",

"41", "4765625", "4855", "64262209891208", "743",
"83452969239664", ”info", "metrics", "age", "avg", "eps", "ev",
"group", "ingest", "kb", "kbps", "max", "per", "pipe", "series",
"sourcetype”]

How Splunk takes a log line and creates TERMS with minor breakers

These terms are only
accessible with the
TERM keyword

These terms are used
for _raw search

SIDE NOTE: Over precision in numbers generates many unique TERMS and bloats the tsidx file

https://cloudzero-quake.stg.splunkcloud.com/en-US/app/search/search?earliest=-60m%40m&latest=now&q=search%20index%3D_internal%20sourcetype%3Dsplunkd%20per_sourcetype%20%0A%7C%20head%201%20%0A%7C%20rex%20field%3D_raw%20max_match%3D100%20%22(%3F%3Cmajor%3E%5B%5E%5C%5B%5C%5D%3C%3E()%7B%7D%7C!%3B%2C%27%5C%22*%5Cn%5Cr%5Cs%5Ct%5D%2B)%22%20%0A%7C%20table%20_raw%20major%0A%7C%20eval%20output%3D%22%5B%5C%22%22.mvjoin(major%2C%22%5C%22%2C%20%5C%22%22).%22%5C%22%5D%22%0A%7C%20mvexpand%20major%0A%7C%20rex%20field%3Dmajor%20max_match%3D100%20%22(%3F%3Cminor%3E%5B%5E%2F%3A%3D%40.%5C-%24%25%5C%5C_%5D%2B)%22%0A%7C%20stats%20values(minor)%20as%20minor_terms%20by%20output%0A%7C%20eval%20minor_terms%3D%22%5B%5C%22%22.mvjoin(minor_terms%2C%22%5C%22%2C%20%5C%22%22).%22%5C%22%5D%22&display.page.search.mode=smart&dispatch.sample_ratio=1&display.page.search.tab=statistics&display.general.type=statistics&sid=1580157681.23561

© 2 0 2 0 S P L U N K I N C .

Eyeballing a log for MAJOR TERMS
Identifying and testing for MAJOR TERMS in your events is easy

["01-27-2020", "20:41:20.355", "+0000", "info", ”metrics", "-",
"group=per_sourcetype_thruput", "ingest_pipe=0", "series=", "top",
"kbps=23.83452969239664", "eps=155.64262209891208", "kb=743.4765625", "ev=4855",
"avg_age=145747.78539381270", "max_age=2116525”, "0000", ", "thruput","0", "01", "155",
"20", "2020", "23", "27", "355", "41", "4765625", "4855", "64262209891208", "743",
"83452969239664", ”info", "metrics", "age", "avg", "eps", "ev", "group", "ingest", "kb",
"kbps", "max", "per", "pipe", "series", "sourcetype”]

01-27-2020 20:29:22.922 +0000 INFO Metrics - group=per_sourcetype_thruput,
ingest_pipe=0, series="splunkd", kbps=258.6201534528208, eps=1367.6474892210738,
kb=8050.1142578125, ev=42571, avg_age=145747.7853938127, max_age=2116525

Input event

Output token list MINOR + MAJOR

© 2 0 2 0 S P L U N K I N C .

Let’s Update Our Example

1. Tom. Rich and Harry

2. Bob loves Fred

3. Fred loves Susan

4. Harry loves Rich

5. Karen loves Susan

6. Loves. Susan Karen

Thanks to major breakers we have additional terms in our index

TERM Events with TERM
tom 1
tom. 1
rich 1,4
harry 1, 4
susan 3, 5, 6
bob 2

fred 2,3
karen 5, 6
loves 2,3,4,5,6
loves. 6

Universal indexing

Major + minor breakers

© 2 0 2 0 S P L U N K I N C .

Search for Exact Match “Karen Loves Susan”
LISPY search = [AND karen loves susan]

1

2

3

4

5

6

7
The posting lists tells us
that we have two slices
that contain all the terms
we need.
We extract these slices
from the bucket,
decompress and run
though schema on the fly
to see if they match.

TSIDX journal
TERM Events containing

TERM
tom 1
tom. 1
rich 1,4
harry 1, 4
susan 3, 5, 6
bob 2
fred 2,3
karen 5,6
loves 2, 3, 4, 5, 6
loves. 6

© 2 0 2 0 S P L U N K I N C .

Karen Loves Susan NOT TERM(loves.)
LISPY search = [AND karen loves susan [NOT loves.]]

1

2

3

4

5

6

7

But excluding ”loves.” (with
the comma) we have stopped
the need to open and parse
slice 6.
This means only a single
event is parsed onto index on
the fly.

TSIDX journal
TERM Events with TERM

tom 1

tom. 1

rich 1,4

harry 1, 4

susan 3, 5, 6
bob 2

fred 2,3

karen 5,6
loves 2, 3, 4, 5, 6
loves. 6

The false positive ratio
is now 0% - doubling

performance 🥳🥳

© 2 0 2 0 S P L U N K I N C .

“walklex” Lets to You Inspect the Lexicon
We can see INDEXED FIELDS when type=fieldvalue

© 2 0 2 0 S P L U N K I N C .

“walklex” Lets to You Inspect the Lexicon
We can see TERMS when type=term

© 2 0 2 0 S P L U N K I N C .

Splunk Has Two Major Search Options
_raw search has the most versatility, but advanced users use tstats

versatileFast

© 2 0 2 0 S P L U N K I N C .

Example: Splunk’s Hostwide Metrics (-31d)
Hostwide metrics uses “INDEXED_JSON” and can be queried both ways

Raw search
134 secs

Equivalent tstats search
3 secs

Improvement is x39 faster for the same result set

© 2 0 2 0 S P L U N K I N C .

The Need for Indexed Fields Limits tstats
Adoption

It is difficult to discover the existence of
indexed fields when available
• The walklex function introduced in 7.3 helps
• The existence of TERMS can be inferred from

log data

Although barely undocumented
tstats supports the TERM() directive

The prerequisite of indexed fields means its application is limited

raw search

tstats

Few searches can be converted to tstats

https://docs.splunk.com/Documentation/Splunk/7.3.0/SearchReference/Walklex

© 2 0 2 0 S P L U N K I N C .

Indexed Field Creation
At ingestion we can extract metadata from raw
event and create indexed fields
• Uses props and transforms, normally via REGEX,

sometimes INGEST_EVAL
• This is discouraged in favor of search time extractions

HTTP Event collector has a “fields” section
• Slightly dangerous as clients define indexed

fields and can bloat TSIDX

Some structured data sources can optionally
create indexed fields automatically
• INDEXED_EXTRACTIONS works with CSV and JSON data
• This can bloat the TSIDX file, and is frequently disabled

Post ingestion we use an create a datamodel
• Data models are based entirely on indexed fields, no raw

events, just TSIDX files
• Building the data model requires a raw search, this can hide

the true cost

There are various ways to get indexed fields into Splunk

https://docs.splunk.com/Documentation/Splunk/8.0.1/Data/Configureindex-timefieldextraction
https://docs.splunk.com/Documentation/SplunkCloud/8.0.1/Data/IFXandHEC
https://docs.splunk.com/Documentation/Splunk/8.0.1/Data/Extractfieldsfromfileswithstructureddata
https://docs.splunk.com/Documentation/Splunk/8.0.1/Knowledge/Aboutdatamodels

© 2 0 2 0 S P L U N K I N C .

How to Get the Most From Indexed Fields
If review complex pipeline configurations is your bag, you’ll love this talk!

© 2 0 2 0 S P L U N K I N C .

tstats Supports TERM

09/24/2020 09:26:00 +0000, search_name="Indicator - Shared -
5dd8512622092b554f3e7da7 - ITSI Search", search_now=1600939560.000,
info_min_time=1600939260.000, info_max_time=1600939560.000,
info_search_time=1600939594.150, qf="", kpi="Average Alert Severity",
kpiid="ec77165d-e79f-4379-9534-3479954e64a6", urgency=5, serviceid="9a6bdac6-
fa6c-423e-81dc-785dbf75637e", itsi_service_id="9a6bdac6-fa6c-423e-81dc-
785dbf75637e", is_service_aggregate=1, is_entity_in_maintenance=0,
is_entity_defined=0, entity_key=service_aggregate, is_service_in_maintenance=0,
kpibasesearch=5dd8512622092b554f3e7da7, is_filled_gap_event=0,
alert_color="#F26A35", alert_level=5, alert_value=5, itsi_kpi_id="ec77165d-e79f-
4379-9534-3479954e64a6", is_service_max_severity_event=1, alert_severity=high,
alert_period=1, entity_title=service_aggregate, hostname="https://itsi-
search.customer.com:443"

This is a log line from ITSI, lots of useful TERMS in here

We can use TERM on any of the tokens highlighted in yellow, but notice the one in RED

© 2 0 2 0 S P L U N K I N C .

tstats Supports TERM

| tstats prestats=t count where index=itsi_summary TERM(alert_severity=high) by _time span=1sec
| fillnull "high" alert_severity
| tstats prestats=t append=t count where index=itsi_summary TERM(alert_severity=low) by _time span=1sec
| fillnull "low" alert_severity
| tstats prestats=t append=t count where index=itsi_summary TERM(alert_severity=medium) by _time span=1sec
| fillnull "medium" alert_severity
| tstats prestats=t append=t count where index=itsi_summary TERM(alert_severity=normal) by _time span=1sec
| fillnull "normal" alert_severity
| tstats prestats=t append=t count where index=itsi_summary TERM(alert_severity=unknown) by _time span=1sec
| fillnull "unknown" alert_severity
| timechart limit=50 span=1sec count by alert_severity

Some simple searches can be expressed with TERM

index=itsi_summary TERM(alert_severity=*)
| timechart span=1sec count by alert_severity

tstats
version is

48x faster🚀🚀

© 2 0 2 0 S P L U N K I N C .

PREFIX Directive Added to tstats In v8

The extension massively increases the instances
where tstats can be used

PREFIX allows TERMS to be processed as if they
were indexed fields, for example:
• Indexed field search: | tstats count by host
• TERM search: | tstats count by PREFIX(host=)

PREFIX is also supported in aggregators:
• Indexed field search: | tstats sum(PREFIX(value=))

With PREFIX indexed fields are not longer a prerequisite for tstats

Search

tstats

With PREFIX many more searches
can be converted to tstats in v8

https://jira.splunk.com/browse/SPL-160290

© 2 0 2 0 S P L U N K I N C .

tstats Supports PREFIX()

| tstats count where index=itsi_summary TERM(alert_severity=*)
by PREFIX(alert_severity=) _time span=1sec

| rename alert_severity= as alert_severity
| xyseries _time alert_severity count

PREFIX greatly simplifies our search

prefix version is
3x faster again!

| tstats prestats=t count where index=itsi_summary TERM(alert_severity=high) by _time span=1sec
| fillnull "high" alert_severity
| tstats prestats=t append=t count where index=itsi_summary TERM(alert_severity=low) by _time span=1sec
| fillnull "low" alert_severity
| tstats prestats=t append=t count where index=itsi_summary TERM(alert_severity=medium) by _time span=1sec
| fillnull "medium" alert_severity
| tstats prestats=t append=t count where index=itsi_summary TERM(alert_severity=normal) by _time span=1sec
| fillnull "normal" alert_severity
| tstats prestats=t append=t count where index=itsi_summary TERM(alert_severity=unknown) by _time span=1sec
| fillnull "unknown" alert_severity
| timechart limit=50 span=1sec count by alert_severity

🚀🚀
🚀🚀

© 2 0 2 0 S P L U N K I N C .

Q. What is the ingestion over 24 hours?

01-21-2020 12:25:44.311 +0000 INFO Metrics - group=thruput,
ingest_pipe=1, name=thruput, instantaneous_kbps=3.366894499322308,

instantaneous_eps=12.163696322058637, average_kbps=47.777961955016565,
total_k_processed=31355244, kb=104.6298828125, ev=378, load_average=2.42

Load average = how hard the server is working
Kb = the data processed since the last reading

Instantaneous_kbps = the ingestion rate at point of measurement
Pipeline = the ingestion pipeline the reading is from

Every host generates metrics about its ingestion throughput very 30 seconds

© 2 0 2 0 S P L U N K I N C .

Search conversion raw -> tstats

index=_internal host IN (idx*) group=thruput name=thruput
| bin span=1767s _time
| stats

sum(kb) as indexer_kb
avg(instantaneous_kbps) as instantaneous_kbps
avg(load_average) as load_avg
by host _time

| tstats
sum(PREFIX(kb=)) as indexer_kb
avg(PREFIX(instantaneous_kbps=)) as instantaneous_kbps
avg(PREFIX(load_average=)) as load_avg
where
host IN (idx*) index=_internal

host=idx* TERM(group=thruput) TERM(name=thruput)
by host _time span=1767s

Raw search PREFIX search

This search demonstrated a 10x performance improvement over 24 hours

prefix version is
30x faster!

© 2 0 2 0 S P L U N K I N C .

How did cachemgr behave over 24 hours?

09-21-2020 12:10:41.051 +0000 INFO Metrics - group=cachemgr_bucket, open=4557, close=4561, cache_hit=4557, open_buckets=4

09-21-2020 12:10:44.330 +0000 INFO Metrics - group=cachemgr_bucket, open=3550, close=3550, cache_hit=3550, open_buckets=4

09-21-2020 12:10:39.985 +0000 INFO Metrics - group=cachemgr_bucket, open=3412, close=3415, cache_hit=3412, open_buckets=4

09-21-2020 12:10:44.102 +0000 INFO Metrics - group=cachemgr_bucket, register_start=1, open=4096, close=4100, cache_hit=4096, open_buckets=6

09-21-2020 12:10:45.709 +0000 INFO Metrics - group=cachemgr_bucket, register_start=1, register_end=1, open=3162, close=3164, cache_hit=3162, open_buckets=5

09-21-2020 12:10:41.229 +0000 INFO Metrics - group=cachemgr_bucket, register_cancel=1, open=4794, close=4796, cache_hit=4794, open_buckets=7

09-21-2020 12:10:10.012 +0000 INFO Metrics - group=cachemgr_bucket, open=4783, close=4779, cache_hit=4783, open_buckets=8

09-21-2020 12:10:23.227 +0000 INFO Metrics - group=cachemgr_bucket, register_start=1, open=2896, close=2896, cache_hit=2896, open_buckets=4

Metrics.log group=cachemgr_bucket

© 2 0 2 0 S P L U N K I N C .

Search conversion raw -> tstats

index=_internal host IN (idx*) TERM(group=cachemgr_bucket)
| bin span=1798s _time
| stats

sum(absent_summary_skipped) as absent_summary_skipped
sum(bootstrap_summary) as bootstrap_summary
sum(cache_hit) as cache_hit
sum(cache_miss) as cache_miss
sum(close) as close
sum(close_all) as close_all
by host _time

| tstats
sum(PREFIX(absent_summary_skipped=)) as absent_summary_skipped
sum(PREFIX(bootstrap_summary=)) as bootstrap_summary
sum(PREFIX(cache_hit=)) as cache_hit
sum(PREFIX(cache_miss=)) as cache_miss
sum(PREFIX(close=)) as close
sum(PREFIX(close_all=)) as close_all
where
index=_internal host IN (idx*) TERM(group=cachemgr_bucket)
by host _time span=1798s

Raw search PREFIX search

How did cache behave over 24 hours?

prefix version is
25x faster!

© 2 0 2 0 S P L U N K I N C .

Other segmenters.conf Options

[full]

[indexing]
change INTERMEDIATE_MAJORS to "true" if you want an ip address to appear in typeahead as a, a.b, a.b.c, a.b.c.d
the typical performance hit by setting to "true" is 30%
INTERMEDIATE_MAJORS = false

[search]
MAJOR = [] < > () { } | ! ; , ' " \n \r \s \t & ? + %21 %26 %2526 %3B %7C %20 %2B %3D -- %2520 %5D %5B %3A %0A %2C %28 %29 / : = @ . - $ # % \\ _
MINOR =

[standard]
MAJOR = [] < > () { } | ! ; , ' " * \n \r \s \t / : = @ . ? - & $ # + % _ \\ %21 %26 %2526 %3B %7C %20 %2B %3D -- %2520
MINOR =

[inner]
MAJOR = [] < > () { } | ! ; , ' " * \n \r \s \t / : = @ . ? - & $ # + % _ \\ %21 %26 %2526 %3B %7C %20 %2B %3D -- %2520
MINOR =

[outer]
MAJOR = [] < > () { } | ! ; , ' " * \n \r \s \t & ? + %21 %26 %2526 %3B %7C %20 %2B %3D -- %2520
MINOR =

You can disable major breakers per sourcetype by indexing with “search”

https://docs.splunk.com/Documentation/Splunk/latest/Admin/Segmentersconf

© 2 0 2 0 S P L U N K I N C .

Testing Segmentation Options on splunkd.log
Removing all major
breakers drops bucket size
by 20%

Using regex to extract all
attribute value pairs,
including quoted strings
increased the size of the
search segmentation by
50%

Switching from default to
regex extraction caused an
increase of 18%

Major breakers are very expensive on storage if you don’t use them

© 2 0 2 0 S P L U N K I N C .

Work Avoidance – Loadjob
You can execute a search in one location and then use the results it in another

When developing complex searches on large data sets, avoid repeatedly reloading event
data from indexers as you iterate towards your solution

10 seconds to run10 minutes to run

© 2 0 2 0 S P L U N K I N C .

Work Avoidance – Dashboard Base Searches
Run base searches once, use child searches to modify the base data set
<form>
<search id="run_once">
<query>

index="search_demo_2" label average sum
| timechart sum(sum) avg(sum)

</query>
</search>
<search base="run_once">
<query>

| table _time $show_field$
</query>

</search>
<fieldset>
<input type="dropdown" token="show_field">

<label>show field</label>
<choice value="avg(sum)">avg</choice>
<choice value="sum(sum)">sum</choice>

</input>
</fieldset>

</form>

The user can modify the $show_field$
token without causing the base search to

execute

Base search contains no tokens, it remains static

The child search contains the token and is
reevaluated whenever it is updates

This is how you build is a high-performance interactive dashboards

© 2 0 2 0 S P L U N K I N C .

Free performance boost! 1/2
Make your buckets smaller and your searches go slightly faster by updating the config

journalCompression = gzip|lz4|zstd

* The compression algorithm that splunkd should use for the rawdata journal

file of new index buckets.

* This setting does not have any effect on already created buckets. There is

no problem searching buckets that are compressed with different algorithms.

* "zstd" is only supported in Splunk Enterprise version 7.2.x and higher. Do

not enable that compression format if you have an indexer cluster where some

indexers run an earlier version of Splunk Enterprise.

* Default: gzip

We have been improving the compression on
buckets, have you updated your configurations yet?

Use this one!

© 2 0 2 0 S P L U N K I N C .

Free performance boost 2/2
The TSIDX files are normally bigger than the journal, so use latest compression

tsidxWritingLevel = [1|2|3]

* Enables various performance and space-saving improvements for tsidx files.

* For deployments that do not have multi-site index clustering enabled,

set this to the highest value possible for all your indexes.

* For deployments that have multi-site index clustering, only set

this to the highest level possible AFTER all your indexers in the

cluster have been upgraded to the latest code level.

* Do not configure indexers with different values for 'tsidxWritingLevel'

as downlevel indexers cannot read tsidx files created from uplevel
peers.

* The higher settings take advantage of newer tsidx file formats for

metrics and log events that decrease storage cost and increase
performance

* Default: 1

Use level 3!

Who doesn’t
want this for

free?

© 2 0 2 0 S P L U N K I N C .

Everybody Gets a Dashboard
https://github.com/silkyrich/cluster_health_tools/blob/master/default/data/ui/views/search_

performance_evaluator.xml

https://github.com/silkyrich/cluster_health_tools/blob/master/default/data/ui/views/search_performance_evaluator.xml

© 2 0 2 0 S P L U N K I N C .

Bigger is better!

Enter your search here

Make
faster!

Make smaller
SPL to LISPY

SESSION SURVEY
Please provide feedback via the

© 2 0 2 0 S P L U N K I N C .

© 2 0 2 0 S P L U N K I N C .

1. Index and time defines
the considered buckets

buckets

buckets
buckets

2. Metadata and bloom
filters eliminate buckets

buckets

buckets
buckets

3. LISPY queries the tsidx to
identify slices to decompress

bucket

bucket
bucket

5. Schema on the fly extracts
and eliminates events

events

events
events

4. Extracts and parse
events from slices

slices

slices
slices

6. Events are processed by
SPL and returned to the SH

events

events
events

1. Index and time defines considered buckets

All searches are executed
with an index and a time
range. This defines our list
of buckets to consider.

The first performance tip is
to make this as tight as
possible.

Minimize indexes and
narrow the time range

© 2 0 2 0 S P L U N K I N C .

1. Index and time defines
the considered buckets

buckets

buckets
buckets

2. Metadata and bloom
filters eliminate buckets

buckets

buckets
buckets

3. LISPY queries the tsidx to
identify slices to decompress

bucket

bucket
bucket

5. Schema on the fly extracts
and eliminates events

events

events
events

4. Extracts and parse
events from slices

slices

slices
slices

6. Events are processed by
SPL and returned to the SH

events

events
events

Why is performance so bad?

When the scan count is high and
the event count is low we are
filtering events during schema on
the fly.

This is the most expensive place
to filter as we have downloaded
buckets, open the tsidx,
extracted slices fully parsed
events.

Minimize filtering during schema
on the fly

© 2 0 2 0 S P L U N K I N C .

1. Index and time defines
the considered buckets

buckets

buckets
buckets

2. Metadata and bloom
filters eliminate buckets

buckets

buckets
buckets

3. LISPY queries the tsidx to
identify slices to decompress

bucket

bucket
bucket

5. Schema on the fly extracts
and eliminates events

events

events
events

4. Extracts and parse
events from slices

slices

slices
slices

6. Events are processed by
SPL and returned to the SH

events

events
events

What happened?

By introducing TERM to our
search we were able to improve
elimination earlier in the pipeline.

Doing so saves downloading
journal files from SmartStore, and
reduces CPU required for
decompression and parsing

Minimize filtering during schema
on the fly stage

© 2 0 2 0 S P L U N K I N C .

1. Index and time defines
the considered buckets

buckets

buckets
buckets

2. Metadata and bloom
filters eliminate buckets

buckets

buckets
buckets

3. LISPY queries the tsidx to
identify slices to decompress

bucket

bucket
bucket

5. Schema on the fly extracts
and eliminates events

events

events
events

4. Extracts and parse
events from slices

slices

slices
slices

6. Events are processed by
SPL and returned to the SH

events

events
events

Processing the considered buckets

After we have selected our range
of buckets to search we must find
and extract the data from them to
do so.

Where the filtering is performed
can have a dramatic impact to
search performance.

© 2 0 2 0 S P L U N K I N C .

Agenda 1. Introduction
What this presentation is all about

2. Search and workload elimination
How search works and where time is spent

3. How the index is built
How universal indexing builds the lexicon

4. Bloomfilter elimination
How bloomfilters accelerate _raw search

5. Advanced indexing with Major breaker
How major breakers and turbo charge elimination

6. Introducing tstats
How tstats delivers further performance improvements

7. Other tricks and a performance dashboard
loadjob, base searches and take away dashboard

© 2 0 2 0 S P L U N K I N C .

Explaining TSIDX and the Lexicon

1. Tom. Rich and Harry

2. Bob loves Fred

3. Fred loves Susan

4. Harry loves Rich

5. Karen loves Susan

6. Loves. Susan Karen

Universal indexing breaks down the log lines and extracts the tokens to build a map

TERM Events with TERM
tom 1

rich 1,4

harry 1, 4

susan 3, 5, 6

bob 2

fred 2,3

karen 5, 6

loves 2,3,4,5,6

Universal indexing

The lexicon is composed of
lowercase TERMS

Minor breakers

© 2 0 2 0 S P L U N K I N C .

“Karen Loves Susan” matched two events

5

6

“Loves. Susan
Karen”

“Karen loves
Susan”decompress

decompress

FALSE
POSITIVE

We have extracted two slices, scanned two events and returned one event

scan_count=2, event_count=1

Implies a 50% event elimination during schema on the fly

© 2 0 2 0 S P L U N K I N C .

1. Index and time defines
the considered buckets

buckets

buckets
buckets

2. Metadata and bloom
filters eliminate buckets

buckets

buckets
buckets

3. LISPY queries the tsidx to
identify slices to decompress

bucket

bucket
bucket

5. Schema on the fly extracts
and eliminates events

events

events
events

4. Extracts and parse
events from slices

slices

slices
slices

6. Events are processed by
SPL and returned to the SH

events

events
events

Bloomfilters and metadata eliminate buckets
Buckets that are eliminated to
not have to be further
processed, plus we don’t need
to download tsidx or the journal

Dependent on search, data and
event distribution Splunk can
eliminate up to 99% of buckets.

Second performance tip
maximize elimination

Use host, source and
sourcetype plus spare terms to
help bucket elimination.

© 2 0 2 0 S P L U N K I N C .

Agenda 1. Introduction
What this presentation is all about

2. Search and workload elimination
How search works and where time is spent

3. How the index is built
How universal indexing builds the lexicon

4. Bloomfilter elimination
How bloomfilters accelerate _raw search

5. Advanced indexing with Major breaker
How major breakers and turbo charge elimination

6. Introducing tstats
How tstats delivers further performance improvements

7. Other tricks and a performance dashboard
loadjob, base searches and take away dashboard

© 2 0 2 0 S P L U N K I N C .

How Bloom Filters Eliminate Whole Buckets
Credit to the interactive tool:

The list of terms
held in the

lexicon

The output bit
map for the list

of TERMS

Bloom filters are a useful acceleration technology
for evaluating set membership.

They are able to 100% accuracy in testing for the
existence of terms, but less so for the absence.

The likelihood of false positives decreases as the
size of the array is increased.

In the example we have loaded in the terms from
our example lexicon and how they are translated
to setting bits in the array.

Splunk auto tunes the size of the bloom filter to
maintain a good balance between size and
accuracy (often above 99%).

https://www.jasondavies.com/bloomfilter/

https://www.jasondavies.com/bloomfilter/

© 2 0 2 0 S P L U N K I N C .

Looking Up Non-existent Terms
A positive false, and a false negative

This is an example of
the bloom filter clash.
We need the bloom filter
to be larger

We need to open the
tsidx file and check the
lexicon to see if it is
really there.

This is an example of
the bloom correctly
assessing an absence
test.

We don’t need to open
the tsidx file, the term is
definitely not there

© 2 0 2 0 S P L U N K I N C .

The Bucket \ Journal is Composed of Slices
The Postings list maps TERMS to locations into its associated bucket

1

2

3

4

5

6

7
The TSIDX file maps TERMS
found in the lexicon to slices to
decompress in the journal file.
Given these locations we can
decompress the slices required
and inspect the _raw string.
Note that the need to support
slices is the reason bucket
compression can use lz4, zstd
and gzip, but will never support

TSIDX
journal

TERM Slices containing
TERM

tom 1
rich 1,4
harry 1, 4
susan 3, 5, 6
bob 2
fred 2,3
karen 5, 6
loves 2,3,4,5,6

© 2 0 2 0 S P L U N K I N C .

A “Bucket” is a Directory
A bucket is a collection of files held in a directory structure; notable files highlighted

(base) rmorgan-mbp-4cb4b:splunk rmorgan$ ls -al search_demo/db/db_1596632603_1596618900_87/
total 17936
drwx--x--- 16 rmorgan wheel 512 7 Aug 20:03 .
drwx------ 8 rmorgan wheel 256 28 Aug 10:14 ..
-rw------- 1 rmorgan wheel 8 7 Aug 20:03 .rawSize
-rw------- 1 rmorgan wheel 7 7 Aug 20:03 .sizeManifest4.1
-rw------- 1 rmorgan wheel 503929 7 Aug 20:03 1596620994-1596618900-4712026901567338950.tsidx
-rw------- 1 rmorgan wheel 3727073 7 Aug 20:02 1596632603-1596620225-4538014197027015779.tsidx
-rw------- 1 rmorgan wheel 57894 7 Aug 20:02 Hosts.data
-rw------- 1 rmorgan wheel 118 7 Aug 20:02 SourceTypes.data
-rw------- 1 rmorgan wheel 669 7 Aug 20:02 Sources.data
-rw------- 1 rmorgan wheel 1429857 7 Aug 20:02 Strings.data
-rw------- 1 rmorgan wheel 208669 7 Aug 20:03 bloomfilter
-rw------- 1 rmorgan wheel 75 7 Aug 20:03 bucket_info.csv
-rw------- 1 rmorgan wheel 2545204 7 Aug 20:03 merged_lexicon.lex
-rw------- 1 rmorgan wheel 49 7 Aug 20:03 optimize.result
drwx------ 5 rmorgan wheel 160 7 Aug 20:03 rawdata
-rw------- 1 rmorgan wheel 97 7 Aug 20:03 splunk-autogen-params.dat
(base) rmorgan-mbp-4cb4b:splunk rmorgan$ ls -al search_demo/db/db_1596632603_1596618900_87/rawdata/
total 1568
drwx------ 5 rmorgan wheel 160 7 Aug 20:03 .
drwx--x--- 16 rmorgan wheel 512 7 Aug 20:03 ..
-rw------- 1 rmorgan wheel 773899 7 Aug 20:03 journal.zst
-rw------- 1 rmorgan wheel 144 7 Aug 20:03 slicemin.dat
-rw------- 1 rmorgan wheel 1200 7 Aug 20:03 slicesv2.dat

TSIDX files that point
TERMS into slices
found in the journal

A list of the hosts,
sourcetypes and

sources found in this
bucket

Bloomfilters are
computed when

buckets are closed

The journal file that contains the
actual raw data compressed together

© 2 0 2 0 S P L U N K I N C .

Eliminated buckets
Bloomfilters and metadata allows us to eliminate buckets early, avoiding work

considered_buckets vs eliminated_buckets

© 2 0 2 0 S P L U N K I N C .

1. Index and time defines
the considered buckets

buckets

buckets
buckets

2. Metadata and bloom
filters eliminate buckets

buckets

buckets
buckets

3. LISPY queries the tsidx to
identify slices to decompress

bucket

bucket
bucket

5. Schema on the fly extracts
and eliminates events

events

events
events

4. Extracts and parse
events from slices

slices

slices
slices

6. Events are processed by
SPL and returned to the SH

events

events
events

tstats Processes tsidx Files Only

The primary reason why tstats is so
highly performant is that it works
exclusively on the TSIDX files.

This means that it does no
decompression or parsing, saving a
huge amount of computation.

Unlike _raw search or mstats it
doesn’t support any bucket
elimination.

This is likely to feature in future
releases.

© 2 0 2 0 S P L U N K I N C .

TSIDX reduction is destroyer of performance
Deletes the tsidx files but keeps the bloomfilters, disables almost all work load elimination

enableTsidxReduction = <boolean>

* Whether or not the tsidx reduction capability is enabled.

* By enabling this setting, you turn on the tsidx reduction capability.

This causes the indexer to reduce the tsidx files of buckets when the

buckets reach the age specified by 'timePeriodInSecBeforeTsidxReduction'.

* CAUTION: Do not set this setting to "true" on indexes that have been

configured to use remote storage with the "remotePath" setting.

* Default: false

😱😱
🤮🤮

Just don’t do it!

😱😱
🤮🤮

https://docs.splunk.com/Documentation/Splunk/8.0.6/Indexer/Reducetsidxdiskusage

© 2 0 2 0 S P L U N K I N C .

Frozen Buckets Have No Metadata

The freezing process removes
the metadata from a bucket.
The journal file contains all the
information required to rebuild
the various metadata files.
This is how buckets are
unfrozen.

Don’t tell Elisa

	TSTATS and PREFIX
	Slide Number 2
	Slide Number 3
	Slide Number 4
	The Key to Productivity Is Work Avoidance
	Search Performance Underpins Everything
	Search Performance Underpins Everything
	Minimize Work: Select indexes
	Minimize Work: Select a timerange
	Output: A list of Buckets to consider
	Six stages of indexer search processing
	Scan Count Vs. Event Count
	Early Elimination Improves Performance
	The difference is in the LISPY
	Where to MAJOR TERMS Come From?
	Step 1 – Applying MAJOR Breakers
	Step 2 – Applying MINOR Breakers
	Eyeballing a log for MAJOR TERMS
	Let’s Update Our Example
	Search for Exact Match “Karen Loves Susan”
	Karen Loves Susan NOT TERM(loves.)
	“walklex” Lets to You Inspect the Lexicon
	“walklex” Lets to You Inspect the Lexicon
	Splunk Has Two Major Search Options
	Example: Splunk’s Hostwide Metrics (-31d)
	The Need for Indexed Fields Limits tstats Adoption
	Indexed Field Creation
	How to Get the Most From Indexed Fields
	tstats Supports TERM
	tstats Supports TERM
	PREFIX Directive Added to tstats In v8
	tstats Supports PREFIX()
	Q. What is the ingestion over 24 hours?
	Search conversion raw -> tstats
	How did cachemgr behave over 24 hours?
	Search conversion raw -> tstats
	Other segmenters.conf Options
	Testing Segmentation Options on splunkd.log
	Work Avoidance – Loadjob
	Work Avoidance – Dashboard Base Searches
	Free performance boost! 1/2
	Free performance boost 2/2
	Everybody Gets a Dashboard
	Slide Number 44
	Slide Number 45
	1. Index and time defines considered buckets
	Why is performance so bad?
	What happened?
	Processing the considered buckets
	Slide Number 50
	Explaining TSIDX and the Lexicon
	“Karen Loves Susan” matched two events
	Bloomfilters and metadata eliminate buckets
	Slide Number 54
	How Bloom Filters Eliminate Whole Buckets
	Looking Up Non-existent Terms
	The Bucket \ Journal is Composed of Slices
	A “Bucket” is a Directory
	Eliminated buckets
	tstats Processes tsidx Files Only
	TSIDX reduction is destroyer of performance
	Frozen Buckets Have No Metadata

