
© 2 0 2 0 S P L U N K I N C .

© 2 0 2 0 S P L U N K I N C .

Richard Morgan
Vladimir Skoryk

INGEST_EVAL
and
CLONE_SOURCETYPE
Advanced pipeline configurations

Splunk

During the course of this presentation, we may make forward‐looking statements regarding
future events or plans of the company. We caution you that such statements reflect our
current expectations and estimates based on factors currently known to us and that actual
events or results may differ materially. The forward-looking statements made in the this
presentation are being made as of the time and date of its live presentation. If reviewed after
its live presentation, it may not contain current or accurate information. We do not assume
any obligation to update any forward‐looking statements made herein.

In addition, any information about our roadmap outlines our general product direction and is
subject to change at any time without notice. It is for informational purposes only, and shall
not be incorporated into any contract or other commitment. Splunk undertakes no obligation
either to develop the features or functionalities described or to include any such feature or
functionality in a future release.

Splunk, Splunk>, Data-to-Everything, D2E and Turn Data Into Doing are trademarks and registered trademarks of Splunk Inc. in the United States
and other countries. All other brand names, product names or trademarks belong to their respective owners. © 2020 Splunk Inc. All rights reserved

Forward-
Looking
Statements

© 2 0 2 0 S P L U N K I N C .

Richard Morgan Vladimir Skoryk

Veteran Splunkers
Who Are We?

• Principal Architect
• 6 years Splunker
• Full stack expert
• Data junkie and SPL addict
• Enjoys reverse engineering
• Located in London EMEA

• Principal PS Architect
• 7 years with Splunk PS
• Loves photography
• Lives at MIA

© 2 0 2 0 S P L U N K I N C .

How splunkd Transforms Compare to DSP

DSP
• GUI for pipeline design
• Debugging tools
• Supports SPL2
• Multiple integration points in / out
• Is the future

Transforms
• Apply EVAL logic on indexed fields
• Apply REGEX to events
• Implemented in splunkd

Splunk > DSP

splunkd
transforms

Splunkd transforms are a subset of
the functionality found in DSP

© 2 0 2 0 S P L U N K I N C .

What Are Splunk
Transforms?

(how to suck eggs, don’t worry we will be really fast!!!)

© 2 0 2 0 S P L U N K I N C .

Transforms Apply Rules to Incoming Data

• They are applied at on an indexer, heavy forwarder (and a UF if local_indexing=true)

• They can be applied during event parsing (and at search time, but we are ignoring that)

• They can address and modify the fields _raw, host, sourcetype, source, etc

• They can add, remove and modify user defined indexed fields from _meta

• They can clone (make another copy of) an event

• They can route events out via S2S, syslog or TCP

• They can selectively delete/ drop events

© 2 0 2 0 S P L U N K I N C .

Splunkd’s Major Transformation Options

INGEST_EVAL (7.2) - These allow you to address multiple fields, and provides the near full EVAL
library from SPL into the ingestion process
CLONE_SOURCETYPE (6.2) - A extension to REGEX that allows you to create a fresh new copy
of an event in the data stream

SED_CMD - This applies a SED command to your _raw string to replace and mask data
REGEX - These allow you apply regular expressions to extract text data and copy between the
metadata keys / registers.

Combine these transforms for synergy and profit!

© 2 0 2 0 S P L U N K I N C .

INGEST_EVAL

CLONE
SOURCETYPE

REGEX
SED_CMD

Functional Overlap Between Commands

INGEST_EVAL has the greatest versatility and can mostly
replace both SED_CMD and REGEX by with its replace()
function. However there are exceptions:

1) REGEX allows you to build variables names and set values,
whereas INGEST_EVAL only allows you to assign values to
known names.

2) REGEX allows for repeated matching, but the eval replace
command does not.

3) SED_CMD also allows for repeated matching within the
_raw string.

4) REGEX uses a compiled REGEX library and is more
efficient on resources

99% of what you want to do can be achieved with INGEST_EVAL

© 2 0 2 0 S P L U N K I N C .

Default Keys You Can Read and Write To
REGEX transform name INGEST_EVAL name Notes

_time _time The timestamp for the event in unix epoch time (the only number attribute)

_raw _raw The event string itself, the _raw you see in search

Metadata:Host host The label for the host, the host you see in search

Metadata:Source source The label for the source, the source you see in search

Metadata:Sourcetype sourcetype The label for the sourcetype, the host you see in sourcetype

_meta NOT AVAILABLE The buffer that contains a delimited list of indexed fields

index index The target index for the event

queue queue The next step in the parsing queue (rarely specified unless set to null)

_TCP_ROUTING _TCP_ROUTING Set to the target output group for forwarding to another host

This is not an exhaustive list, other keys may exist, but are not necessarily useful

© 2 0 2 0 S P L U N K I N C .

What Is the _meta for?
Flipping the hood on how indexed fields are put in the lexicon

© 2 0 2 0 S P L U N K I N C .

Cracking Open _meta for Inspection
[regex_copy_meta_to_raw]
SOURCE_KEY = _meta
DEST_KEY = _raw
REGEX = (.*)
FORMAT = $1

To aid understanding of how indexed
fields are added we will look inside the
_meta key

The transform on the LHS copies the
contains of _meta into _raw

This allows the contents of _meta can be
viewed in search

This is an invaluable technique for
debugging transforms

© 2 0 2 0 S P L U N K I N C .

Looking Inside _meta for splunkd.log Events
We have copied the _meta field into _raw for
splunkd events using the transform on the
previous slide. These fields become indexed
fields.

We can see the default user defined indexed
fields generated by splunk when reading log
files (not included when ingesting via HEC)

Note that punct is yet to computed as it
happens in the tokenization process at the
point of indexing

Note that subseconds are implemented as
via indexed fields.

The values of date_* are fossils from splunk
version 4

© 2 0 2 0 S P L U N K I N C .

Looking Inside _meta for disk_objects.log Events
We have configured a transform
that copies the contents of _meta
to _raw for some events encoded
with INDEXED_JSON. These
values in _meta become indexed
fields.
We can see a see how JSON is
transformed into attribute values
held in the _meta field.
We can also see the default
values mentioned in the previous
slide.

© 2 0 2 0 S P L U N K I N C .

Manipulating _meta Field With REGEX
This appends two indexed fields to the _meta
field. If those fields exist, they become multi
value
WRITE_META = True
FORMAT = abc::123 def::456

This overwrites the _meta field and replaces it
with just two indexed fields
DEST_KEY = _meta

FORMAT = abc::123 def::456

This appends a single multi value field to meta
FORMAT = mv_field::1 mv_field::2

The original REGEX transform allowed for very
simple manipulation of _meta. You could only
overwrite or add to it

It is not possible to selectively delete from _meta,
nor could you do any computation on the fields.

It is very easy to create a corrupted _meta string
when using REGEX to build them

However REGEX remains the primary way to
extract data from events and write them into
_meta

REGEX transforms offer a REPEAT_MATCH
option

© 2 0 2 0 S P L U N K I N C .

Manipulating _meta With INGEST_EVAL
This appends two fields abc def to _meta. It
may create multi value fields if they already
exist
INGEST_EVAL = abc=123, def=456

This appends to _meta and will overwrite
any existing values for xyz
INGEST_EVAL = xyz:=789

This will delete the field abc from _meta
INGEST_EVAL = abc:=null()

INGEST_EVAL is effectively a
wrapper around _meta that allows
you to atomically manipulate the
entries in the field
On the left we can see the basic
operations for manipulating the
entities in the _meta string
In addition to this we have the
(near) full library of EVAL
expressions as found in SPL

© 2 0 2 0 S P L U N K I N C .

Tips for When Working with Transforms

Use Visual Studio Code with the Splunk Extension to manage configs

Instead of restarting Splunk, use the reload URL http://localhost:8000/en-US/debug/refresh

Use _index_earliest and _index_latest to view recently ingested data

Only develop on your laptop as messing with ingestion is ultra dangerous

Use the [copy_to_meta] transform to debug

Don’t use “one shot” use “nom on” and enjoy the easter egg!

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Splunk.splunk
http://localhost:8000/en-US/debug/refresh

© 2 0 2 0 S P L U N K I N C .

Advanced Pipeline
Configurations

Ten of them….Sorry we made you wait so long!

© 2 0 2 0 S P L U N K I N C .

1. License Usage

Splunk typically charges on an ingestion and some customers chose to bill their internal
customers via this method as well

Typically people refer to license_usage.log to compute and allocate the ingestion costs.
However this is a pretty crude, and the searches are expensive

We can use INGEST_EVAL to compute the string length for each event and write it to an
indexed field where we can performance license calculation

© 2 0 2 0 S P L U N K I N C .

1. Add Event Length as Indexed Field

props.conf
Thanks to “default” this configuration is applied to all sourcetypes and it adds an indexed field len
of the event

This is very useful for using with tstats to sum up all ingested data from any source very quickly

We must try and make sure that this transforms is the last to be applied to event, otherwise it is
possible that subsequent transforms may shorten or lengthen _raw after it is computed.

[default]

TRANSFORM-z-last_transform = add_raw_length_to_meta_field

transforms.conf
This transforms calls len() to determine the length of the string in _raw and write the result to an
indexed field event_length

[add_raw_length_to_meta_field]

INGEST_EVAL = event_length=len(_raw)

© 2 0 2 0 S P L U N K I N C .

1. Using the Indexed Field Using tstats

| tstats

sum(event_length) AS total_ingestion

WHERE index=* _index_earliest=-30d@d _index_latest=-1d@d

BY sourcetype _time span=1d@d

| xyseries _time sourcetype total_ingestion

Modify the example to split by other indexed fields like host and source, etc.

© 2 0 2 0 S P L U N K I N C .

2. Data Estimation Pipeline Metrics Edition

Prior to a net new data source being onboarded, additional context might be required to
ensure sufficient compute and storage is available.

We can use INGEST_EVAL and CLONE_SOURCETYPE functionality to emit metrics
events can describe the data coming in, original information does not need to be kept!

• Note, metric event takes up to 150 bytes of license

© 2 0 2 0 S P L U N K I N C .

2. Data Estimation Pipeline Metrics
props.conf
data comes in on this sourcetype
[v:orig:data]
this configuration is universal, and can be reused
TRANSFORMS-enable_estimate_mode_drop_orig =
v_estimation_set_metrics, v_estimation_create_metrics,
v_estimation_drop_orig

metrics of metadata are created on this sourcetype
[v:estimate:pipeline]
TRANSFORMS-set_metric_name = v_estimation_metric_info

transforms.conf
clone original data, will be transformed into metrics
event
[v_estimation_create_metrics]
REGEX = (.*)
CLONE_SOURCETYPE = v:estimate:pipeline

create metadata about the event, preserve original
attributes
these fields will become metric dimensions!
[v_estimation_set_metrics]
INGEST_EVAL = orig_host=host, orig_source=source,
orig_sourcetype=sourcetype, orig_index=index

we do not need to keep the original data, only want
the metadata, let’s drop
[v_estimation_drop_orig]
INGEST_EVAL = queue="nullQueue"

format event into a metric, route it to appropriate
metrics index
[v_estimation_metric_info]
INGEST_EVAL = index="data_metrics",
metric_name="estimation_mode", _value=len(_raw)

© 2 0 2 0 S P L U N K I N C .

2. Data Estimation Pipeline Metrics

| mstats prestats=t max(_value) avg(_value)
WHERE index=data_metrics AND metric_name="estimation_mode"
BY orig_sourcetype span=5m

| timechart max(_value) avg(_value) BY orig_sourcetype

© 2 0 2 0 S P L U N K I N C .

3. Selective Routing to Other Destinations

Sometimes data needs to be shared with other destinations, Splunk or 3rd party systems.

Use cases can require all or subset of data to be shared. INGEST_EVAL can be used to
control data routing groups.

Tip: For advanced routing pipelines, see Splunk Data Stream Processor (DSP)

© 2 0 2 0 S P L U N K I N C .

3. Selective Routing to Other Destinations
props.conf
data comes in on this sourcetype
[v:interesting:data]
TRANSFORMS-example_data_route = v_sample_route_buttercup_bu

transforms.conf
if event data host is from buttercup1 OR buttercup2
route data to Splunk Cloud, otherwise send it to onprem indexers
[v_sample_route_buttercup_bu]
INGEST_EVAL = _TCP_ROUTING=if(match(host, "buttercup[12]"), "splunkcloud_indexers", "splunk_onprem_indexers")

outputs.conf
[tcpout]
defaultGroup = splunk_onprem_indexers

this output group routes data to Splunk Cloud
[tcpout:splunkcloud_indexers]
server = inputs.buttercup.splunkcloud.com:9997

this output group keeps data on-prem
[tcpout:splunk_onprem_indexers]
server = 10.10.10.10:9997

© 2 0 2 0 S P L U N K I N C .

4. Manage Conflicting Time Formats
Any well curated splunk instance will use
sourcetype to accurate identify the event
format timestamp
However occasionally collisions occur in a
single sourcetype where there are conflicting
date stamps. An example of such data is
shown on the RHS
Traditionally the solution is to use
datetime_config.xml and hope for the best or
roll your own
INGEST_EVAL offers a new approach of
using strptime() function

Fri Aug 21 20:39:18 2020 splunk> We enjoy breaks more than Unions
20:42:36 20-08-21 splunk> I gotta fever, and the only cure is MOAR LICENSE!
20:46:49 20-08-21 splunk> All batbelt. No tights.
2020-08-21 21:02:08 splunk> Finding disturbances in the Force before the Jedi
Masters
Wed Aug 26 13:38:47 2020 splunk> These are the droids you are looking for
Wed Aug 26 13:57:24 2020 Splunk> Take the sh out of IT.
Wed Aug 26 14:00:21 2020 Splunk> Winning the War on Error
Wed Aug 26 14:01:37 2020 Splunk> See your world. Maybe wish you hadn’t.
2020-08-26 14:05:52 Splunk> Be an IT superhero. Go home early.
14:24:50 20-08-26 Splunk> Winning the War on Error
2020-08-26 14:45:14 splunk> More flexible than an Olympic gymnast.
2020-08-26 14:57:46 splunk> Finding your faults, just like mom.
2020-08-26 15:04:27 Splunk> The IT Search Engine.
15:11:32 20-08-26 Splunk> Take the sh out of IT.
Wed Aug 26 15:13:01 2020 Splunk> see the light before you tunnel
Wed Aug 26 15:30:55 2020 splunk> don't get caught up in the game of pwns
15:33:06 20-08-26 splunk> We line break for regular expressions
15:37:49 20-08-26 splunk> ""\. nuff said.
2020-08-26 15:41:32 splunk> These are the droids you are looking for
15:49:09 20-08-26 splunk> IT like you mean it
2020-08-26 15:54:34 splunk> These are the droids you are looking for
Wed Aug 26 15:55:53 2020 Splunk> Needle. Haystack. Found.
2020-08-26 16:03:06 Splunk> I like big data and I cannot lie.
16:13:14 20-08-26 splunk> ""\. nuff said.
2020-08-26 16:13:27 Splunk> see the forest, and the trees

mutliplexed_datetime_formats.log

© 2 0 2 0 S P L U N K I N C .

4. Configuration to Demultiplex Conflicting
Time Formats

props.conf
[demutliplexed_datetime_formats]

DATETIME_CONFIG = CURRENT

TRANSFORMS-extract_date = demultiplex_datetime

transforms.conf
[demultiplex_datetime]
add fall-through case to set custom date or route “unknown” data to special quarantine index

INGEST_EVAL= _time=case(isnotnull(strptime(_raw, "%c")), strptime(_raw, "%c"), isnotnull(strptime(_raw, "%H:%M:%S %y-
%m-%d")),strptime(_raw, "%H:%M:%S %y-%m-%d"), isnotnull(strptime(_raw, "%Y-%m-%d %H:%M:%S")), strptime(_raw, "%Y-%m-
%d %H:%M:%S"))

In this example we initially set the time of the event to be the current time. After this we use a transform to try and replace that time by
testing the known time formats using a case statement and pick the first that matches.
This is not very computationally efficient as we are invoking strptime multiple times, but we are able to get the answer in a single
invocation of INGEST_EVAL.

© 2 0 2 0 S P L U N K I N C .

5. Extract Time and Data From File Name
Sometimes the date and time files are
split up and need to be rejoined for date
parsing.
Previously we would need to use
datetime_config.xml and hope for the
best or roll your own.
With INGEST_EVAL we can tackle this
problem more elegantly
The RHS shows an examples of such an
output

(base) rmorgan-mbp-4cb4b:compound_date_time rmorgan$ ls -l
total 152
-rw-r--r-- 1 rmorgan wheel 1052 17 Aug 22:15 2020-08-17.log
-rw-r--r-- 1 rmorgan wheel 808 17 Aug 22:15 2020-08-18.log
-rw-r--r-- 1 rmorgan wheel 891 17 Aug 22:15 2020-08-19.log
-rw-r--r-- 1 rmorgan wheel 932 17 Aug 22:15 2020-08-20.log
-rw-r--r-- 1 rmorgan wheel 9063 21 Aug 20:19 2020-08-21.log
-rw-r--r-- 1 rmorgan wheel 8692 21 Aug 20:19 2020-08-22.log

(base) rmorgan-mbp-4cb4b:compound_date_time rmorgan$ head -10 2020-
08-17.log
01:23:11 splunk> Digs deeper than a jealous spouse.
03:42:27 Splunk> Be an IT superhero. Go home early.
04:07:08 splunk> More flexible than an Olympic gymnast.
04:24:47 splunk> Walking War Room!!
04:30:41 Splunk> see the light before you tunnel
06:10:07 Splunk> data with destiny
06:29:28 splunk> More flexible than an Olympic gymnast.
06:52:00 splunk> ""\. nuff said.
07:52:59 Splunk> Take the sh out of IT.
08:44:00 Splunk> See your world. Maybe wish you hadn’t.

© 2 0 2 0 S P L U N K I N C .

5. Combine Source and _raw to Create
Date Stamp

props.conf
[compound_date_time]

DATETIME_CONFIG = CURRENT

TRANSFORMS-get-date = construct_compound_date

SHOULD_LINEMERGE = false

LINE_BREAKER = ([\n\r]+)

transforms.conf
use regex replace to pop out the date form the source, append on the first 10 chars from _raw and then run
through strftime and assign the result to _time. If the eval fails to execute _time is not updated and the
previously set CURRENT time will remain

[construct_compound_date]

INGEST_EVAL=_time=strptime(replace(source,".*/(20\d\d\-\d\d\-\d\d)\.log","\1").substr(_raw,0,10),"%Y-%m-
%d%H:%M:%S")

© 2 0 2 0 S P L U N K I N C .

6. Event Sampling

Consider you have a web server generating 1000’s events per second, we only care
about errors, and the ratio of errors to OK. We can sample the OK, and provide high
resolution for errors

Also a great way to route subset of data to a TEST, DEV, or UAT environments!
• ..when combined with selective routing example

© 2 0 2 0 S P L U N K I N C .

6. Event Sampling
props.conf
data comes in on this sourcetype
[v:orig:data]
TRANSFORMS-sample_200_data = v_sample_200_data

transforms.conf
will look for events with status code 200 AND random number not equal to zero
if true, drop the data
if false, example will keep *roughly* one event out of 100
[v_sample_200_data]
INGEST_EVAL = queue=if(match(_raw, "status=200") AND (random()%100)!=0, "nullQueue",
"indexQueue")

© 2 0 2 0 S P L U N K I N C .

7. Dropping Fields from INDEXED_CSV
Both INDEXED_CSV and
INDEXED_JSON is very cool but it
creates indexed fields for every
column or element which can inflate
your TSIDX size that increases disk
usage.

Sometimes we would like a subset
of these fields for fast search but
have the remaining available via
schema on the fly.

primary_key,primary_value,repeated_field,random_nonsense,long_payload
0,285719,same silly value,98e41eba-90d4-4820-ac24-0b8135072857,splunk> this way: Run-D.M.C.
1,282189,same silly value,f86517cb-7a96-4363-9d50-6e890611827a,splunk> We enjoy breaks more than Unions
2,775074,same silly value,4e98b505-bd8d-49c0-8f7b-c889905350b3,splunk> this way: Run-D.M.C.
3,883007,same silly value,0ac163c5-f78e-4d20-8dba-b3c9f576f3dc,splunk> The mars rover of the IT landfill.
4,904525,same silly value,3ced7433-aaf0-4f5c-ac26-1c9b3b1cdb8f,splunk> The mars rover of the IT landfill.
5,939794,same silly value,46390cae-fd48-4a4e-a550-883f012e6145,splunk> We enjoy breaks more than Unionsers
7,183164,same silly value,b3cd4a3e-b2a2-46b7-938f-352009e6d420,Splunk> The IT Search Engine.
8,636841,same silly value,88903bf1-ed92-4120-ba4e-16c977318e07,splunk> this way: Run-D.M.C.
9,724250,same silly value,e03375dd-53a4-4a24-8356-c6c6ab097d51,Splunk> The Notorious B.I.G. D.A.T.A.
10,515046,same silly value,1e952330-7e52-4f9a-99d7-f9f72399c148,Splunk> Australian for grep.
11,492531,same silly value,3ace4c1a-e09c-4da2-83d3-be3dff566ca0,splunk> Walking War Room!!
12,869021,same silly value,447b350c-9a56-4848-bc95-7e479d75b2b7,splunk> Digs deeper than a jealous spouse.
13,821334,same silly value,2036fa19-e2a8-480b-9b09-df85e08b1696,splunk> Show me your logs
14,385989,same silly value,522e36bb-1c8f-4279-94e5-6c7cb72147bd,Splunk> All batbelt. No tights.
16,925553,same silly value,f99ae57a-24e2-4b0b-b45c-e3259ad0e5de,Splunk> The IT Search Engine.
17,583905,same silly value,cb77de52-f021-46ba-b22d-0ee35c8aac4f,splunk> Show me your logs
18,237347,same silly value,4266d252-a616-4492-b8e9-17f18146746c,Splunk> Take the sh out of IT.
19,570619,same silly value,436e610d-e8a2-4890-8868-dbd9f2a98278,Splunk> 4TW
20,970552,same silly value,1099bf0e-c7e7-45d2-be20-2fa2581451e5,splunk> Walking War Room!!
21,872840,same silly value,edf64f2f-0985-4e00-9ce0-2023dd6be07d,Splunk> The IT Search Engine.
22,155976,same silly value,1a43ca31-1f1c-425d-89a2-c6aa3584b607,splunk> More flexible than an Olympic
gymnast.

useless_columns.csv

© 2 0 2 0 S P L U N K I N C .

7. Drop Indexed Fields, Replace With regex
props.conf
[reduced_columns]

DATETIME_CONFIG = CURRENT

INDEXED_EXTRACTIONS = CSV

TRANSFORMS-drop_fields = drop_useless_fields

EXTRACT-removed-columns = [^,]+,[^,]+,[^,]+,(?<random_nonsense>[^,]+),(?<long_payload>[^,]+)

transforms.conf
[drop_useless_fields]

note the := syntax

INGEST_EVAL = repeated_field:=null(), random_nonsense:=null(), long_payload:=null()

© 2 0 2 0 S P L U N K I N C .

8. Export and Import Data From Splunk

Sometimes you would like to bulk export data from an existing Splunk index
and reingest on your laptop for development

This pattern allows you to run a search that extracts data from an install via CSV
export and import it again via a specific sourcetype.

This is achieved by creating a “protocol” for encoding via search, and then decoding
via transforms.

Note that version this does not reparse data or does it carry any indexed fields across.

© 2 0 2 0 S P L U N K I N C .

8. Export Data Into Export Format
The screen host on the LHS shows
100 events encoded by search into
a single column table and ready for
export via CSV.
The “protocol” uses a %%% as a
separator and we order it as index,
host, sourcetype, source and then
_raw.
We assume that the % character is
only found in _raw to optimize our
REGEX statement.
Copy and paste version of the
search in the image:
index=* | eval
_raw=_time."%%%".index."%%%".host."%%%".source."%%%".sourcetype."%%%".
_raw | table _raw

© 2 0 2 0 S P L U N K I N C .

props.conf

[import_data]
DATETIME_CONFIG = CURRENT
TRANSFORMS-extract-metadata = drop_header, extract_metadata_copy_to_meta, reassign_meta_to_metadata,
remove_metadata_from_raw
Splunk encodes quotes for CSV output, we need to undo this
SEDCMD-strip_double_quotes = s/""/"/g

transforms.conf

[drop_header]
the header field form a Splunk CSV export starts with the first row being named after the header _raw. We want to
drop these
INGEST_EVAL = queue=if(_raw="\"_raw\"","nullQueue", queue)

[extract_metadata_copy_to_meta]
we use REGEX to pop out the values for index, host, sourcetype & source, we then write them to temporary variables
in _meta. We assume that % is not found in the primary keys to optimize the REGEX
alternatively, this can be done using INGEST_EVAL and split() function!
SOURCE_KEY=_raw
WRITE_META = true
REGEX = ^"\d+(?:\.\d+)?%%%([^%]+)%%%([^%]+)%%%([^%]+)%%%([^%]+)%%%
FORMAT = my_index::"$1" my_host::"$2" my_source::"$3" my_sourcetype::"$4"

[reassign_meta_to_metadata]
copy the temporary user defined fields into the primary metadata locations and then delete the temporary fields
INGEST_EVAL = host:=my_host, source:=my_source, index:=my_index, sourcetype:=my_sourcetype, my_host:=null(),
my_source=null(), my_index:=null(), my_sourcetype:=null()

[remove_metadata_from_raw]
extract the _raw field from the protocol and write back to _raw
INGEST_EVAL = _raw=replace(_raw, "^[^%]+%%%(?:[^%]+)%%%(?:[^%]+)%%%(?:[^%]+)%%%(?:[^%]+)%%%(.*)\"","\1")

© 2 0 2 0 S P L U N K I N C .

9. REGEX Indexed Field Extraction

By default Splunk ingests data with its universal indexing algorithm which is a
general-purpose tokenization process based around major and minor breakers.
However some log data is in a consistently named with value attribute pairs and in
this instance, we can use REGEX transforms with REPEAT_MATCH = true to
implement something similar to “INDEXED_CSV” and “INDEXED_JSON” but for
logs.
We disable major breakers and write REGEX expressions that find value attribute
pairs in the following forms a=”b”, a=b, a=’b’ and write out a::b into _meta to
create an indexed field with the name “a” and value “b”

© 2 0 2 0 S P L U N K I N C .

9. Example of a “Well Formed” Log File
Each of the value attribute pairs can be convert via a REGEX transform to indexed fields. Lots
of log files follow this pattern, including the splunkd metrics.log

2020-08-26 16:34:14 group=no_quotes average=0.19585154741998068 group='single quotes'

2020-08-27 03:08:24 sum=8778 group="double quotes"

2020-08-27 17:07:50 average=0.4927135575360 name=no_quotes group="double quotes" sum=9288

2020-08-28 02:24:03 group='single quotes' label=no_quotes

2020-08-28 13:59:41 average=0.9929766028504498 name="double quotes"

2020-08-29 16:24:52 label=no_quotes name='single quotes'

2020-08-29 16:48:54 average=0.057624992829093724 sum=9092 sum=7238

2020-08-30 01:42:15 sum=6435 average=0.3208281756906822 average=0.5810043305482762

2020-08-31 05:06:31 name='single quotes' label=no_quotes

© 2 0 2 0 S P L U N K I N C .

props.conf

this sourcetype is an example for how we can use REPEAT_MATCH and regex to automatically extract fields from log files
[indexed_log]
TIME_FORMAT = %Y-%m-%d %H:%M:%S
SHOULD_LINEMERGE = false
LINE_BREAKER = ([\n\r]+)
TRANSFORMS-extract_indexed_fields = regex_extract_doubled_quoted_av_pairs, regex_extract_single_quoted_av_pairs,
regex_extract_unquoted_av_pairs

transforms.conf

this regex finds single quoted attribute value pairs, ie the form a="b", and appends them to _meta
[regex_extract_doubled_quoted_av_pairs]
SOURCE_KEY = _raw
REGEX = \s([a-zA-Z][a-zA-Z0-9_-]+)="([^"]+)"
REPEAT_MATCH = true
FORMAT = $1::"$2"
WRITE_META = true

this regex finds single quoted attribute value pairs, ie the form a=b, and appends them to _meta
[regex_extract_unquoted_av_pairs]
SOURCE_KEY = _raw
REGEX = \s([a-zA-Z][a-zA-Z0-9_-]+)=([^\s"',]+)
REPEAT_MATCH = true
FORMAT = $1::"$2"
WRITE_META = true

this regex finds single quoted attribute value pairs, ie the form a='b', and appends them to _meta
[regex_extract_single_quoted_av_pairs]
SOURCE_KEY = _raw
REGEX = \s([a-zA-Z0-9_-]+)='([^']+)'
REPEAT_MATCH = true
FORMAT = $1::"$2"
WRITE_META = true

© 2 0 2 0 S P L U N K I N C .

9. Accessing Our Dynamically Created Fields
With the fields automatically
converted into indexed fields
via REGEX we can do
computation on our log file
entirely with tstats
providing high speed
computation.

Note how over precision in
the numeric values will
bloats the size TSIDX file
due to high cardinality.

When dealing with high
precision metrics indexes
are superior as they store
numbers as numbers.

© 2 0 2 0 S P L U N K I N C .

10. Complex Selective Encryption Routing

There is often a need to obfuscate the data prior to storage in Splunk, but in some scenarios still
give a possibility to reverse the obfuscation.

Concept of a low and high security index can be had, where general reporting occurs on obfuscated
“low security” dataset, but for select few access to “high security” data set can be granted to
perform the “reversal”.

Also allow for different retentions, where for first 30 days reversal is possible, however, post that the
reversal key is removed.

Think compliance and regulatory use-cases, especially in financial and health industries, also
GDPR use-cases in EU.

Use of INGEST_EVAL and CLONE_SOURCETYPE makes this possible!

© 2 0 2 0 S P L U N K I N C .

10. Complex Selective Encryption Routing

2

1

3

© 2 0 2 0 S P L U N K I N C .

10. Complex Selective Encryption Routing
props.conf
data comes in on this sourcetype
[v:email:data:orig]
TRANSFORMS-clone_data = v_hash_make_clone, v_hash_make_mask

map reference data is created here
[v:email:data:reference_map]
TRANSFORMS-make_map_reference = v_hash_make_map_reference

transforms.conf
this will clone the event for future processing as reference map event
[v_hash_make_clone]
REGEX = (.*)
CLONE_SOURCETYPE = v:email:data:reference_map

this will re-write raw to replace email with sha256 hash for “low security” index
[v_hash_make_mask]
INGEST_EVAL = email_hash=sha256(replace(_raw, "^(.*)email=(\S+)(.*)$", "\2")), _raw=replace(_raw, "^(.*email)=(\S+)(.*)$",
"\1=".email_hash."\3")

this transform routes data, and emits reference map _raw for “high security” index
[v_hash_make_map_reference]
INGEST_EVAL = index=secure, queue=if(match(_raw, "email="), "indexQueue", "nullQueue"), email_hash=sha256(replace(_raw,
"^(.*)email=(\S+)(.*)$", "\2")), _raw="hash=\"".email_hash."\" email=\"".replace(_raw, "^(.*)email=(\S+)(.*)$", "\2")."\""

© 2 0 2 0 S P L U N K I N C .

All The Examples and Sample
Data Can Be From This Deck

Can Be Found at
https://github.com/silkyrich/ingest_eval_examples

SESSION SURVEY
Please provide feedback via the

© 2 0 2 0 S P L U N K I N C .

	INGEST_EVAL �and CLONE_SOURCETYPE
	Slide Number 2
	Who Are We?
	How splunkd Transforms Compare to DSP
	What Are Splunk Transforms?
	Transforms Apply Rules to Incoming Data
	Splunkd’s Major Transformation Options
	Functional Overlap Between Commands
	Default Keys You Can Read and Write To
	What Is the _meta for?
	Cracking Open _meta for Inspection
	Looking Inside _meta for splunkd.log Events
	Looking Inside _meta for disk_objects.log Events
	Manipulating _meta Field With REGEX
	Manipulating _meta With INGEST_EVAL
	Tips for When Working with Transforms
	Advanced Pipeline Configurations
	1. License Usage
	1. Add Event Length as Indexed Field
	1. Using the Indexed Field Using tstats
	2. Data Estimation Pipeline Metrics Edition
	2. Data Estimation Pipeline Metrics
	2. Data Estimation Pipeline Metrics
	3. Selective Routing to Other Destinations
	3. Selective Routing to Other Destinations
	4. Manage Conflicting Time Formats
	4. Configuration to Demultiplex Conflicting Time Formats
	5. Extract Time and Data From File Name	
	5. Combine Source and _raw to Create �Date Stamp
	6. Event Sampling
	6. Event Sampling
	7. Dropping Fields from INDEXED_CSV
	7. Drop Indexed Fields, Replace With regex
	8. Export and Import Data From Splunk
	8. Export Data Into Export Format
	Slide Number 36
	9. REGEX Indexed Field Extraction
	9. Example of a “Well Formed” Log File
	Slide Number 39
	9. Accessing Our Dynamically Created Fields
	10. Complex Selective Encryption Routing
	10. Complex Selective Encryption Routing
	10. Complex Selective Encryption Routing
	All The Examples and Sample Data Can Be From This Deck Can Be Found at
	Slide Number 45

