Predictive Testing Strategy at BMW Group

Using the Deep Learning Toolkit for Splunk

Andreas Schoch

Machine Learning Researcher | IT Innovation Lab, BMW Group

Philipp Drieger

Principal Machine Learning Architect | Splunk

© 2020 SPLUNK INC

Forward-Looking Statements

During the course of this presentation, we may make forward-looking statements regarding future events or plans of the company. We caution you that such statements reflect our current expectations and estimates based on factors currently known to us and that actual events or results may differ materially. The forward-looking statements made in the this presentation are being made as of the time and date of its live presentation. If reviewed after its live presentation, it may not contain current or accurate information. We do not assume any obligation to update any forward-looking statements made herein.

In addition, any information about our roadmap outlines our general product direction and is subject to change at any time without notice. It is for informational purposes only, and shall not be incorporated into any contract or other commitment. Splunk undertakes no obligation either to develop the features or functionalities described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Data-to-Everything, D2E and Turn Data Into Doing are trademarks and registered trademarks of Splunk Inc. in the United States and other countries. All other brand names, product names or trademarks belong to their respective owners. © 2020 Splunk Inc. All rights reserved

Andreas Schoch

Machine Learning Researcher | IT Innovation Lab, BMW Group

Philipp Drieger

Principal Machine Learning Architect | Splunk

Agenda

BMW Innovation Lab

-Who we are and what we do

Use Case and Business Objective

splunk> .conf20

-What is the challenge we want to tackle

Data Science Solution

 How we use the Deep Learning Toolkit for Splunk

Future Plans

-What's next

BMW Innovation Lab

"We like to innovate, we like to do things that haven't been done before, and we like to be leading-edge in technologies."

"The Innovation Lab can be thought of as an interface between the present and the future quality management, where concepts can be integrated into series production."

BMW Innovation Lab and Splunk

5+ years of collaboration and innovation

Our journey of innovations with Splunk:

- conf15: Keynote Presentation
- conf16: Save Energy with Splunk
- conf17: The Next Level of Quality Assurance at BMW with the Machine Learning Toolkit
- conf18: Keynote Presentation for Machine Learning
- conf19: Image Indexing Framework for Image Search and Deep Learning Applications
- conf20: Predictive Testing Strategy at BMW Group
 Using the Deep Learning Toolkit for Splunk

Use Case and Business Objectives

Predictive Testing Strategy at BMW Group

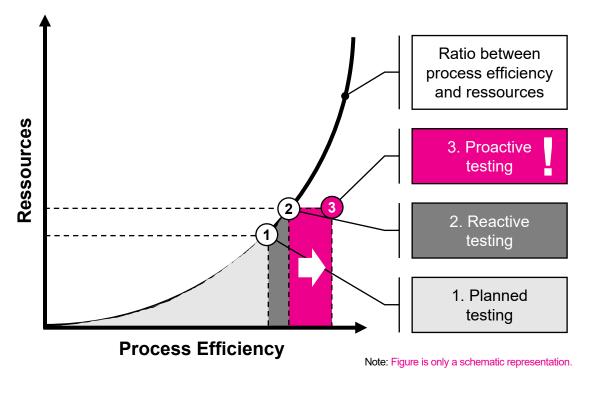
"Everything we do we believe in challenging the status quo."

"The way we challenge the status quo is by creating individual, dynamic and proactive test processes in order to increase process efficiency."

"Can we predict possible error patterns based on a car's specific product configuration?"

Theoretical Approach

Need for predictive testing strategy in order to increase process efficiency


Status Quo

- High degree of process efficiency due to planned and reactive testing (stage 1 and 2)
- Implemented test processes are capable of detecting all relevant error patterns during production
- Extremely high degree of process efficiency and vehicle protection

Challenge

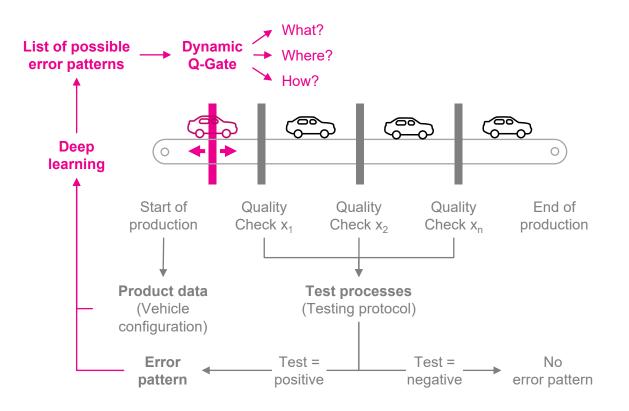
- Implement a predictive testing strategy, which is...
 - ...individual = create vehicle-specific testing proposals
 - ...dynamic = update testing proposals
 - ...proactive = take concrete actions to avoid possible errors

...in order to increase process efficiency without any additional resources (tackle stage 3)

Practical Implementation

Implement dynamic quality gate to spotlight and prioritize possible error patterns

High-level process description


- Lots of standard quality checks (x_n) through production
- All testing results (+/-) are splunked in detail

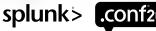
Approach

- Combine product data and deep learning to predict possible error patterns on vehicle level
- Implement a dynamic quality gate at production based on a vehicle-specific list of possible error patterns

Objective

- What: prioritize possible error patterns
- Where: detect error patterns where they are caused
- How: recommend qualified testing activities

Digital Transformation


Increase process efficiency using Deep Learning Toolkit for Splunk

Now

"Splunk Enterprise provides an integrated view on the vehicle's data and enables production teams to keep track of vehicles in order to assure highest production quality."

Future

"Deep Learning Toolkit for Splunk is the brain behind dynamic and proactive test processes and enables production teams to make smarter decision in order to increase process efficiency."

Data Science Solution

Using the Deep Learning Toolkit for Splunk

© 2020 SPLUNK INC.

What is DLTK?

Freely available app for advanced data science projects using any open source AI frameworks

Speed up your data science projects with GPU accelerated containers

Seamlessly integrate & operationalize with Splunk Enterprise

Download the app from splunkbase:

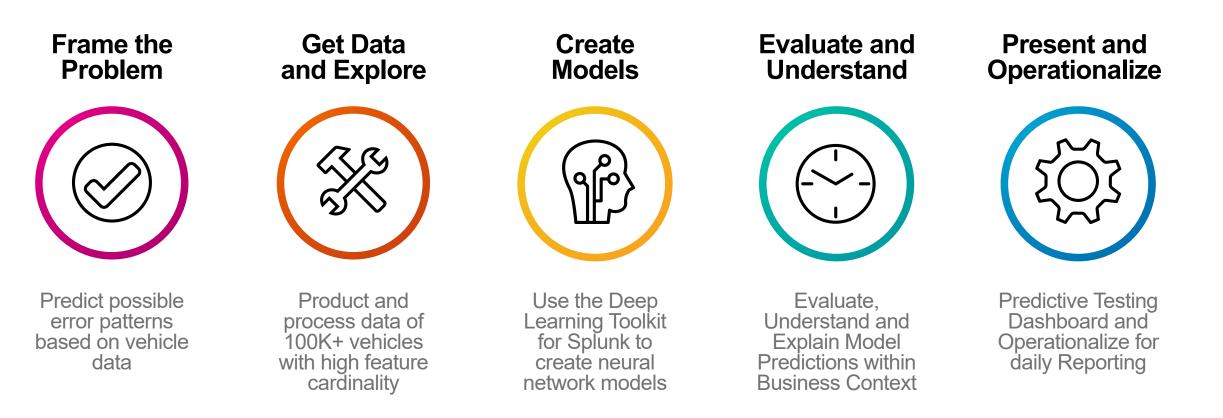
https://splunkbase.splunk.com/app/4607/

Accelerate Your Data Science Innovations

Leverage GPU powered model building and easily integrate with Splunk

Technical setup used in this project:

- NVIDIA DGX Workstation with 4 GPUs
- Splunk Enterprise 8.0
- Deep Learning Toolkit for Splunk 3.2
- Tensorflow based Deep Neural Network
- Historical Data of 100,000+ Produced Vehicles


Spunk > turn data into doing

Data Science Approach

Following five typical steps for an applied data science project

Frame the Problem

Can we predict possible error patterns based on a car's specific product configuration?

Use Case Description

Predict error patterns based on vehicle data

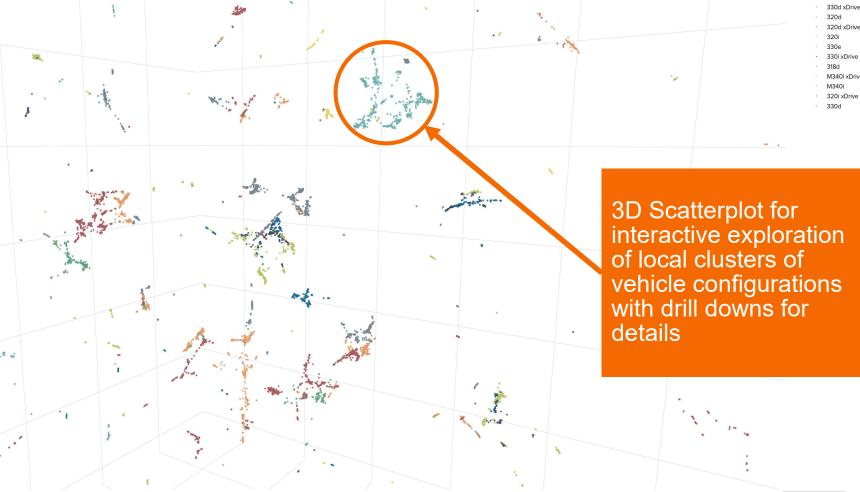
Concept

- Use product data (vehicle configuration) and specific error patterns
- Learn the connection between product data and error patterns
- Try out different machine learning concepts and approaches

Results and outcomes

- Find the best model to predict possible error patterns
- Shortlist vehicles according to their highest testing probability
- Provide a final dashboard for production teams

Get Data and Explore


UMAP based exploration of high dimensional dataset

+

Apply Clustering and detect groups with increased frequency of error combinations

Dimensionality Reduction and Exploration of the Feature Space

Compute meaningful features and use for visualizations

More information on UMAP: <u>https://umap-learn.readthedocs.io/en/latest/</u>

splunk> .conf20

Note: All data used in the presentation are synthetically produced data.

Algorithm

Field to predict

Create Models

Baseline with a basic Random Forest Classifier

RandomForestClassifier testing true * date wday, dhour ... (15) How does the model perform N Estimators Max Depth Max Features Min Samples Split Max Leaf Nodes 100 (optional) (optional) (optional) (optional) on all training data? Notes (optional) Open in Search Show SPL Prediction Results 12 drive \$ hvbrid \$ predicted(testing true) date wday 🗘 dhour periode 🗘 model \$ description \$ notor 🗢 country \$ x 1≑ x 2 motor family motor form \$ motor modul motor range lifecycle motor type : testing true 🗘 XD5 FR 31 wednesday 11 - 4G21 320d xDrive 52 10-4 wednesday 330i xDrive B48 63 26 XD5 FR 31 . . . vednesdav 10-3 621 320d xDrive 11 HYBR 52 wednesday 9-1 G21 320d xDrive HYRR XD5 FR 52 31 11.1 Barriel wednesday 9-1 G20 M340i xDrive NOHY B58 CH 71 35 1 wednesday 8-1 G21 320d xD XD5 DE 66 34 HYBE 5-3 G21 NOH) B48 DE 64 25 wednesday 320 1 4-2 G20 340i xDrive B58 71 34 wednesday NOHY US G21 320d xDrive 51 31 wednesday 4-2 NOHY B47 tuesday 21-4 320i NOH **B48** 45 28 «Prev 1 2 3 4 5 6 7 8 9 10 Next» Precision 12 Recall 🛽 Accuracy 🛽 F1 🗹 Classification Results (Confusion Matrix) 0.72 Predicted actual Predicted 0 \$ Predicted 1 \$ 0.83 0.72 0.76 (26.4%) 0 (62.9%)

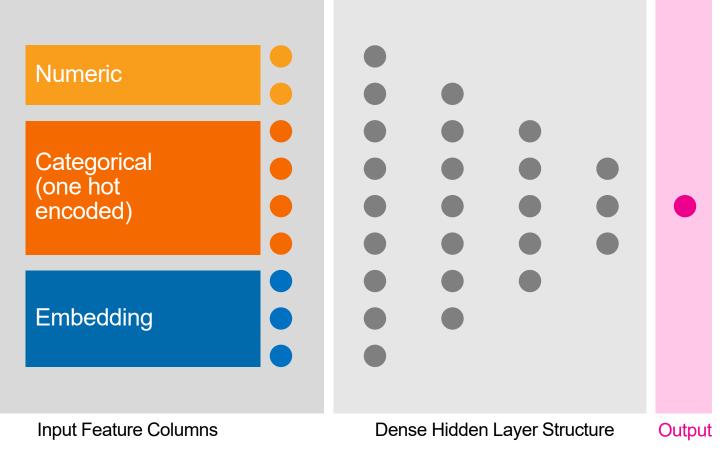
Using Machine Learning Toolkit's RandomForestClassifier

Split for training / test: no sp

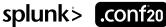
Create a Baseline Model

Fields to use for predicting

Note: All data used in the presentation are synthetically produced data.



Create Models


Improve with a Deep Learning Neural Network Approach

Deep Learning Approach

TensorFlow Neural Network Classifier with Feature Columns

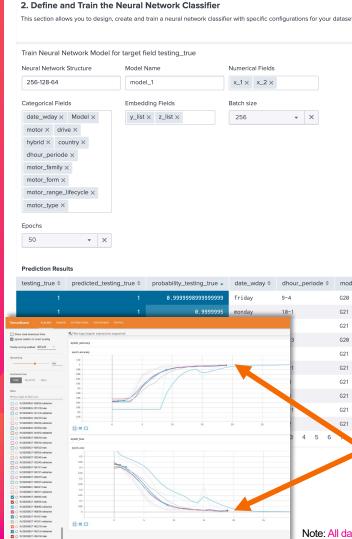
More information: https://www.tensorflow.org/tutorials/structured_data/feature_columns

Note: All data used in the presentation are synthetically produced data.

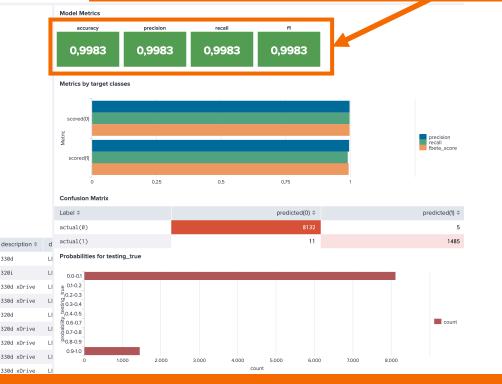
Create **Models**

Improve with a Neural Network and compare with existing baseline

Improvements with Deep Learning


Using a custom TensorFlow Neural Network Classifier

320i


320d

628

G21

± 25% uplift compared to the baseline

The Neural Network converges on training and test validation holdout data with good metrics

Note: All data used in the presentation are synthetically produced data

Apply Models

Apply the Neural Network and evaluate model performance on holdout data

Evaluate Model Performance

Using a custom TensorFlow Neural Network Classifier

Better than expected results and outperforming other existing approaches

	ence							Inference Scorin	g										
Inter	ence on Dataset	predicted_testing_true \$	probability_testing_true 🗸	date_wday \$	dhour_periode \$	model ‡	description	Metriken		precision		recall		fl					
1	esting_tide +	predicted_testing_true +	0.99999833	tuesday	16-4	G20	330e	accuracy		precision		recall		п					
2			0.9999962	tuesday	21-4	G20	318d	0,7109		0,7841		0,710	9 (0,7415					
3	0		0.99999523	monday	4-4	G20	M340i xDri												
4	1		0.9999950999999999	monday	16-3	G21	320d	Metrics by target o	laccor										
5			0.9999938	monday	11-3	G20	330d xDrive		103363										
6			0.99999166	tuesday	14-3	G21	330i xDrive												
7			0.99998903	tuesday	8-3	G21	318d		scored(0)								_	
8			0.9999886999999998	monday	10-2	G21	320d	precision	Metric	-									
9			0.99998844	thursday	18-3	G21	330d xDrive	fbeta_score											
10	0		0.9999882	tuesday	6-3	G21	330d xDrive		scored(1)									
11	0		0.99998367	wednesday	14-4	G21	330d xDrive			0		0,25		0,5			0,75		
12	0		0.99998343	monday	14-3	G20	330i	Confusion Matrix											
13	0	1	0.9999831	friday	12-4	G21	320d xDrive							predicted(0	n =				predicted
14	0	1	0.99998224	friday	15-2	G21	320d	actual(0)							339				predicter
15	0	1	0.99998057	monday	11-3	G20	330d xDrive								302				
16	0		0.99998045	tuesday	16-4	G20	330d xDrive	Probabilities for te	oting true										
17			0.9999802	tuesday	16-4	G20	330e	Probabilities for te	sung_true	2									
18	0		0.9999795	wednesday	14-3	G21	330i	0.0-0.1											
19	0		0.99997886. 90001	monday	6-4	G20	320i	Ē 0.2-0.3											
20			0.9999785-	monday	5-2	G20	330e	20.3-0.4 ts 0.4-0.5											
21	0		0.9999781999999999	mone	6-3	G21	330i	≥0.5-0.6 = 0.6-0.7											c
22			0.99997795	friday	10-3	G20	320i	e 0.7-0.8											
23	0		0.99997044	tuesday	18	G21	330d xDrive	0.8-0.9 0.9-1.0											
24			0.999969	friday	15-2	G21	320d	0 50	0 1.00	00 1.500	2.000	2.500	3.000 3.50 count	0 4.000	4.500	5.000	5.500	6.000	
25			0.9999684999999999	tuesday	21-4	221	330i xDrive												

False positives still exist and further tuning and improvement is possible

Note: All data used in the presentation are synthetically produced data

Evaluate and Understand

Better understand how a machine learning model is working and which features have what impact on a model's output

Model Explainability for Better Transparency and Additional Insights

Make Machine Learning Models Interpretable

GBoost Learnin		arning with XGB	Plot type fo				
0.05		1 • X	Default D		A	ll time	Submit Hide Filters
This example s			ng models with	the help of SHAP (S	Hapley Add	ditive exPlanation	ns), a game theoretic approach to explain the output of any machine learning model. This is helpful to better understand
Dataset Resi	ults and Predictions						SHAP Summary Plot (default)
testing_true 🗘	predicted_testing_true	probability_testing_true -	date_wday ‡	dhour_periode \$	model \$	description \$	(Hig
		0.999998999999999	friday	9-4	G20	330d	motors
		0.9999995	monday	10-1	G21	320i	motors typ farbe_code_
		0.9999993	tuesday	9-1	G21	330d xDrive	farbe_code_
		0.9999993	tuesday	10-3	G20	330d xDrive	model desc farbe Code
		0.99999905	tuesday	7-1	G21	320d	farbe_code
		0.9999988999999999	monday	20-1	G21	320d xDrive	motor
		0.9999988000000001	wednesday	4-4	G21	320d xDrive	farbe_code
			tuesday	6-3	G21	330d xDrive	farbe_code farbe_code farbe_code farbe_code farbe_code
		0.9999986999999999					Tarbe code
		0.999998699999999 0.99999833	monday	14-1	G21	330d xDrive	

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.

More information on SHAP: https://github.com/slundberg/shap



tor

Present and Operationalize

Make the model results accessible and usable in a simples and easy way

Final Dashboard to Communicate Results with Drill Downs for Details

Future

What's Next?

BMW InnovationLab

M

INNOVATION

This organization contains open source software for realtime computer vision published by the developers, partners and friends of the BMW InnovationLab.

🛇 Munich, Germany 🛛 🖂 marc.kamradt@bmw.de

Packages A People 14

Projects

Sharing is Caring

Learn more about BMW Innovation Lab

With Splunk and DLTK: Sky is the Limit!

Thank You

Please provide feedback via the

 \bigcirc

SESSION SURVEY