Best Practices for Workload or Infrastructure Licensing

Jeff Meyers & Burch

Splunk, Inc.

Latest Slides: http://splk.it/conf20-PLA1520

Jeff Meyers

Director of Sales Engineering | Splunk. Inc.

Burch

Lead of Technical Guidance | Splunk, Inc.

Learning Objectives

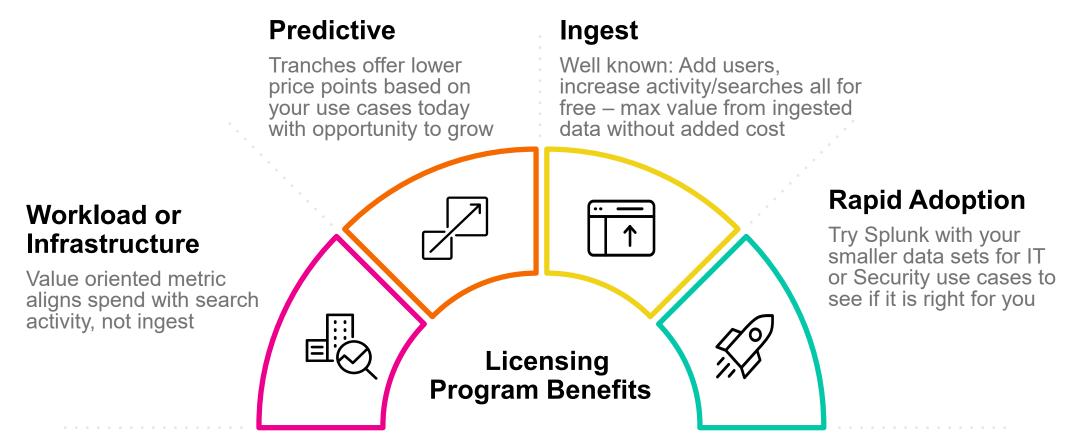
Learning Objectives

1. When this licensing model is a proper fit

Learning Objectives

- 1. When this licensing model is a proper fit
- 2. How this licensing model will adjust your incentives and usage of Splunk

Learning Objectives


- 1. When this licensing model is a proper fit
- 2. How this licensing model will adjust your incentives and usage of Splunk
- 3. Best Practices that will save you money AND clean up your platform

Background

Splunk's Flexible Licensing Options

Get the most out of Splunk depending on your data needs and capabilities

Workload or Infrastructure Licensing Model

Key things to know

Cloud: Workload Licensing (SVC)

On Prem: Infrastructure Licensing (vCPU)

Workload Licensing is an alternative for Splunk Cloud, Splunk Enterprise & Premium Solutions that is based on the compute required to run Splunk

Workload or Infrastructure Licensing Model

Key things to know

Workload Licensing is an alternative for Splunk Cloud, Splunk Enterprise & Premium Solutions that is based on the compute required to run Splunk

Available to new and current Cloud or On Prem customers – measured in SVCs for Cloud and vCPUs for On Prem

Workload or Infrastructure Licensing Model

Key things to know

Cloud: Workload Licensing (SVC)

Utilization

On Prem: Infrastructure Licensing (vCPU)

Allocation

You do not want ingest limits to force selection between important data

You do not want ingest limits to force selection between important data

You want a cost model tied to value (search, analytics and insights)

You do not want ingest limits to force selection between important data

You want a cost model tied to value (search, analytics and insights)

You want the flexibility to adjust workloads based on compute capacity

You do not want ingest limits to force selection between important data

You want a cost model tied to value (search, analytics and insights)

You want the flexibility to adjust workloads based on compute capacity

You want to index all or most of your datasets and source types in Splunk

You do not want ingest limits to force selection between important data

You want a cost model tied to value (search, analytics and insights)

You want the flexibility to adjust workloads based on compute capacity

You want to index all or most of your datasets and source types in Splunk

You have datasets outside of Splunk that can help build additional use cases

Metrics

Deliver:

This is possible because...

Metrics

Deliver:

Customer control

This is possible because...

Splunk CPU utilization is primarily driven by search load and not ingest amount

Metrics

Deliver:

Customer control

Value orientation

This is possible because...

Splunk CPU utilization is primarily driven by search load and not ingest amount

Value is *typically* achieved at search time, not index time

Metrics

Deliver:

Customer control

Value orientation

Logical way to access high and low priority data

This is possible because...

Splunk CPU utilization is primarily driven by search load and not ingest amount

Value is *typically* achieved at search time, not index time

Many customers have a lot more barely used data than frequently used data

Metrics

Deliver:

Customer control

Value orientation

Logical way to access high and low priority data

Require:

Dedicated passion for Splunk administration

This is possible because...

Splunk CPU utilization is primarily driven by search load and not ingest amount

Value is *typically* achieved at search time, not index time

Many customers have a lot more barely used data than frequently used data

Bring in as much data as you want and pay based on how much compute your searches require.

On Prem only, not Cloud

Your Configuration

What Splunk Counts

On Prem only, not Cloud

Your Configuration

Bare Metal Server with no hyperthreading (no. of logical cores = no. of physical cores)

What Splunk Counts

Physical CPU cores

On Prem only, not Cloud

Your Configuration

What Splunk Counts

Bare Metal Server with no hyperthreading

(no. of logical cores = no. of physical cores)

Bare Metal Server with hyperthreading

(no. of logical cores = no. of virtual cores)

Physical CPU cores

Virtual CPUs

On Prem only, not Cloud

Your Configuration

What Splunk Counts

Bare Metal Server with no hyperthreading

(no. of logical cores = no. of physical cores)

Physical CPU cores

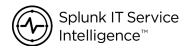
Bare Metal Server with hyperthreading (no. of logical cores = no. of virtual cores)

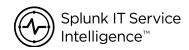
Virtual CPUs

Public Cloud/Virtualization

Virtual CPUs

In pseudo-SPL:


```
| rest splunk_server=* /services/server/sysinfo
| eval logical_cores = coalesce(numberOfVirtualCores,
numberOfCores)
| table splunk_server logical_cores numberOfVirtualCores
numberOfCores
| search splunk_server IN ("searchhead", "indexer")
```



In pseudo-SPL:

splunk_server \$	1	logical_cores ‡ 🗸	numberOfVirtualCores	numberOfCores 🕏 📝
indexer		2	2	1
searchhead		4	4	2
indexer		2	2	1
indexer		2	2	1
indexer		2	2	1
indexer		4	4	2
indexer		2	2	1
searchhead		2	2	1
indexer		2	2	1
indexer		1	1	1
indexer		4	4	2

Premium percentage =

premium data volume / total data volume

Premium percentage =

premium data volume / total data volume

Premium Logical Cores =

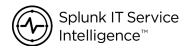
Premium search head cores +

(premium percentage * total logical cores)

Premium percentage =

premium data volume / total data volume

Premium Logical Cores =


Premium search head cores +

(premium percentage * total logical cores)

Example:

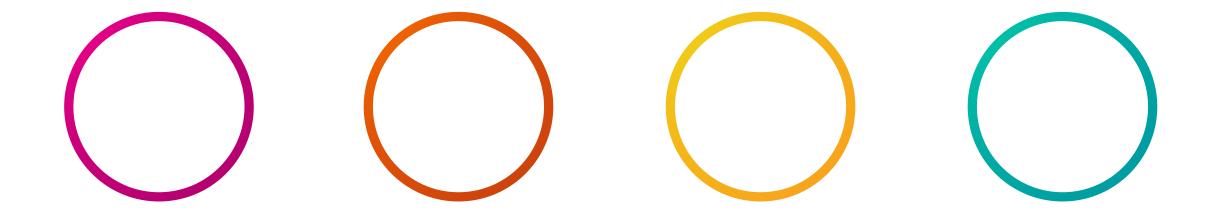
- Near max of about 1TB of total data
- 250GB is for Security
- Therefore, premium percentage is 25%

Premium percentage =

premium data volume / total data volume

Premium Logical Cores =

Premium search head cores +

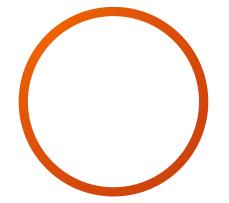

(premium percentage * total logical cores)

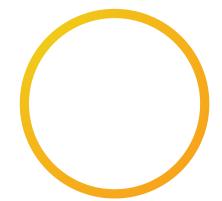
Example:

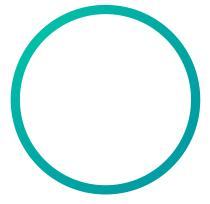
- Near max of about 1TB of total data
- 250GB is for Security
- Therefore, premium percentage is 25%

- 125 total cores
- 1 ES host at 24 cores
- = 24 premium cores + (25% * 125 cores)
- = 57

Keep Everything You Love about Splunk

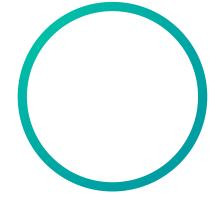



Keep Everything You Love about Splunk


Compatible across portfolio

Keep Everything You Love about Splunk

Compatible across portfolio


Use for Enterprise, ES, ITSI

How it's licensed

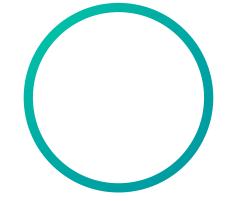
Based on entitlement: cloud – utilization or on prem – deployed logical cores

Keep Everything You Love about Splunk

Compatible across portfolio

Use for Enterprise, ES, ITSI

How it's licensed



Based on entitlement: cloud – utilization or on prem – deployed logical cores

Account for...

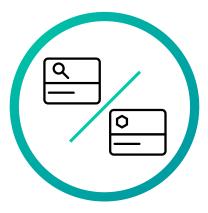
Prod, non-prod, DR/failover....

Keep Everything You Love about Splunk

Compatible across portfolio

Use for Enterprise, ES, ITSI

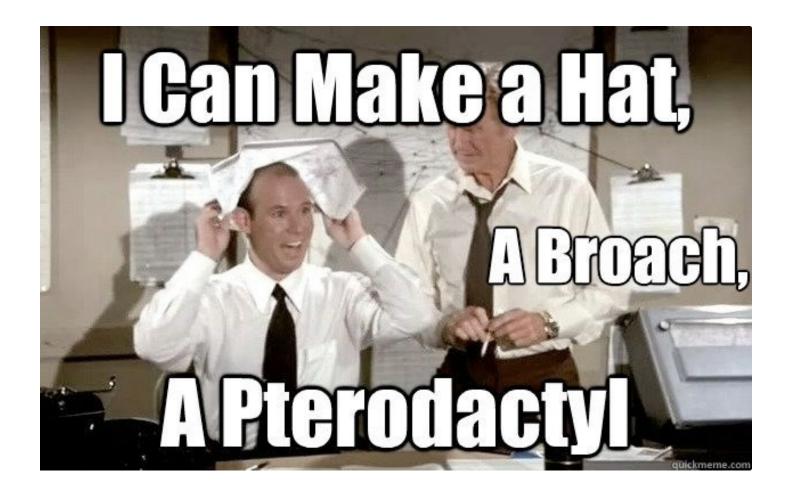
How it's licensed


Based on entitlement: cloud – utilization or on prem – deployed logical cores

Account for...

Prod, non-prod, DR/failover....

Entitlement Hardware


Only SH and IDX count towards entitlement

Licensing

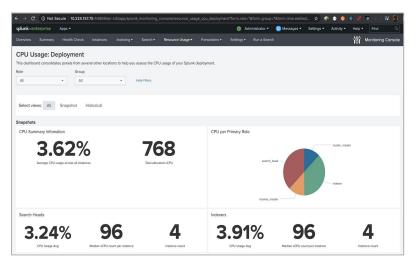
Hey Jeff, How Do I Size?

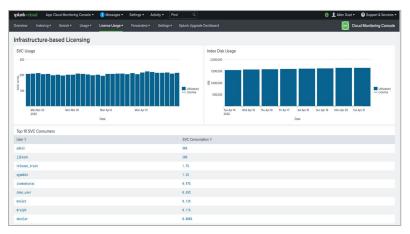
License Files: Don't Trip


Ingest license reporting is wrong and messages can be ignored


```
<?xml version="1.0" encoding="UTF-8"?>
 <signature>
 bIann71CcSG305oJtirAlsg7v9sa3mCC75GCciR5en4R7PIz3tIZxKF6+rDCDMHrZnOI
 1m+VOnm4ys10Z1EWKoSw10YfY9iB0URQZfxWH15XUi7q8fi3cPxavAQI/zj27y+saqq(
 +21VNImOMHK7CBRGDyrexFQDFisNcZxfxHIegFLPyp4KONPiaNLityxO/SUv4fluQoEn
 <payload>
   <type>enterprise</type>
   <group id>Enterprise</group id>
        ca>429496729600</quot
   <max violations>5</max violations>
    window period>30</window period>
   <late1>Splunk Enterprise Term Non-Production vCPU License
              time>1597561199</expiration time>
   <subgroup_id>DevTest</subgroup_id>
   <features>
     <feature>Auth</feature>
     <feature>FwdData</feature>
     <feature>RcvData</feature>
     <feature>LocalSearch</feature>
     <feature>DistSearch</feature>
     <feature>RcvSearch</feature>
     <feature>ScheduledSearch</feature>
     <feature>Alerting</feature>
     <feature>DeployClient</feature>
     <feature>DeployServer</feature>
     <feature>SplunkWeb</feature>
     <feature>SigningProcessor</feature>
     <feature>SyslogOutputProcessor</feature>
     <feature>CanBeRemoteMaster</feature>
     <feature>SubgroupId</feature>
   </features>
   <optional features>
    <feature>DisableQuotaEnforcement</feature>
   </optional features>
   <sourcetypes/>
   <guid>8949BC12-DEC0-4A83-88DC-C53D6904B42F</guid>
 </payload>
</license>
```


License Combinations

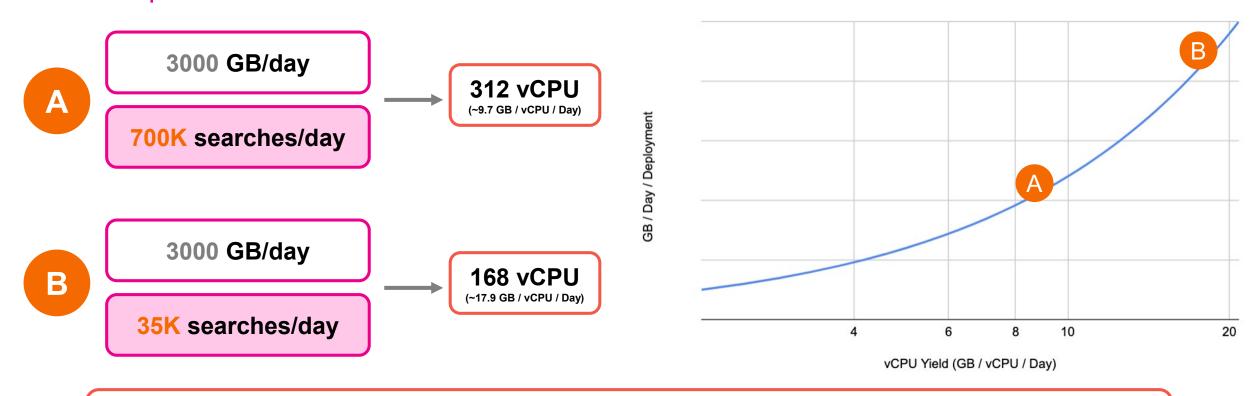

Monitor Usage in Cloud or On-Prem


Use the Cloud Monitoring Console (Cloud) or Monitoring Console (On-Prem)

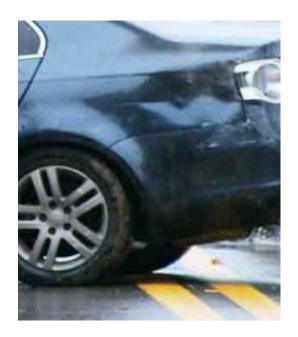
Benchmark and identify peaks in SVC/vCPU use

Identify top consumers and consuming indexes

Monitor distribution across search types, apps, and workload pools to triage & adjust



Best Practices for Infrastructure and Workload Licensing

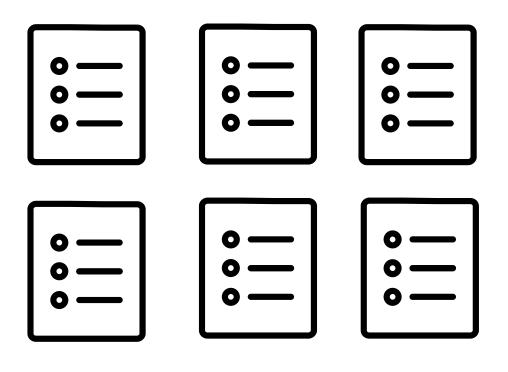

Workload Drives Compute

The importance of vCPU Yield as a metric

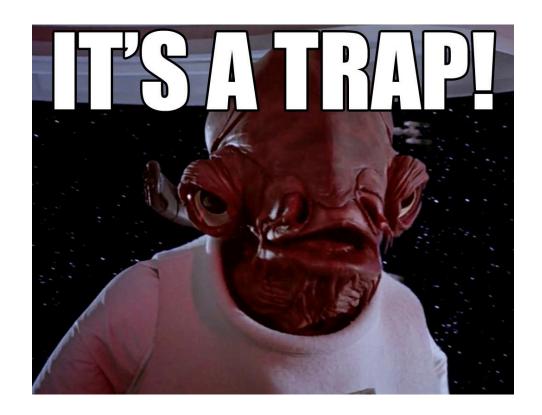
For example, keeping all other factors the same, when search is not consuming CPU, more data can be ingested by the same # of vCPUs.

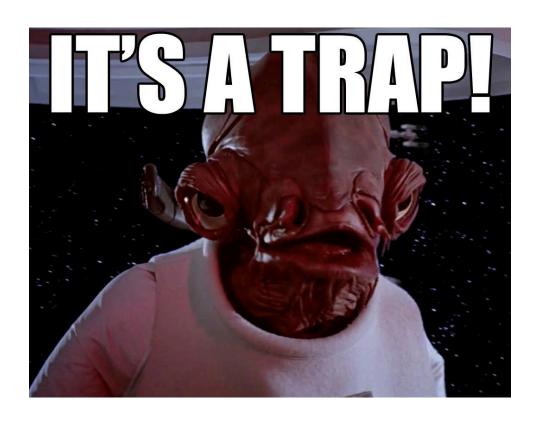
Oh No, is That a Dent?!

Focus on the Big Picture

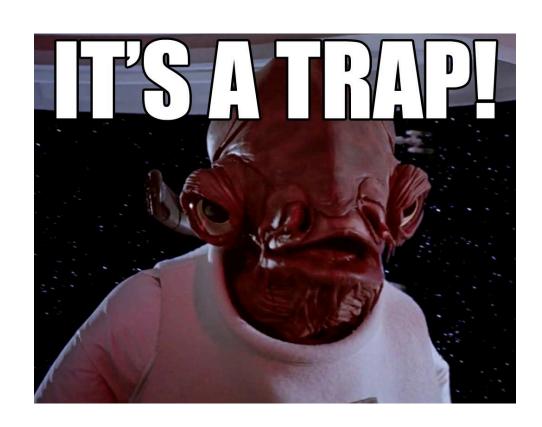


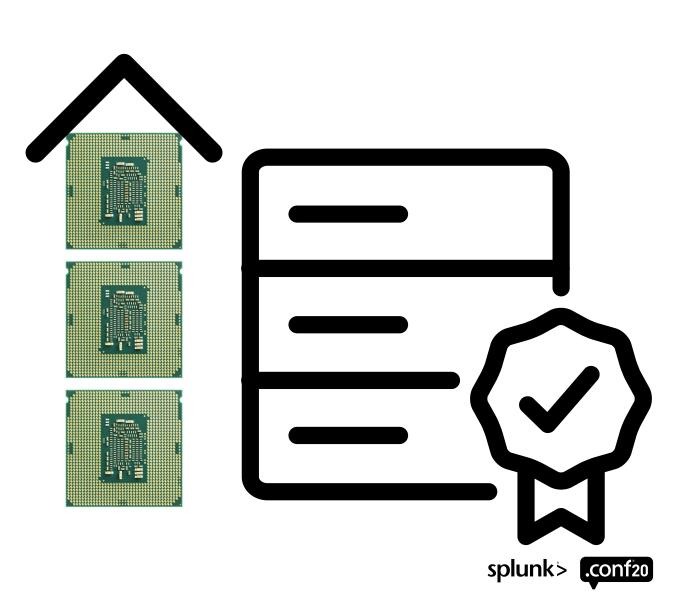
Slow Performance Trap

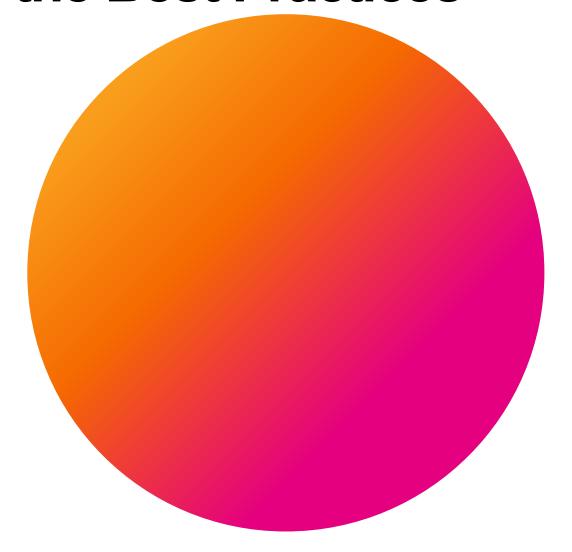

Slow Performance Trap

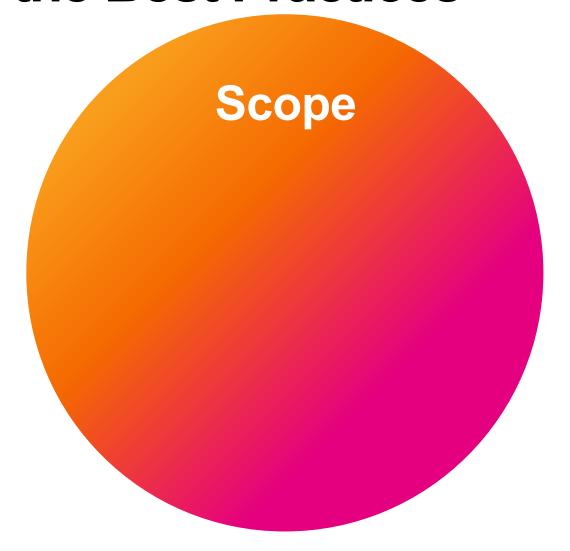


Add Indexers!


Add Indexers!





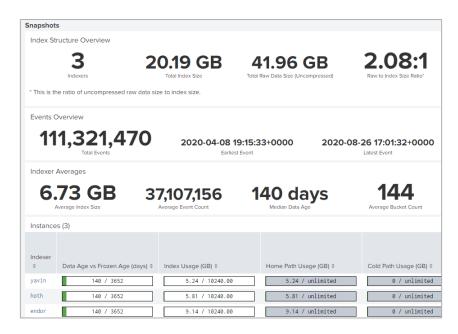


Add Indexers!

Not Scope

Best Practices

- 1. Equal Data Distribution
- 2. Efficient Data Onboarding
- 3. Restrictions on User Search
- 4. Well Defined Searches
- 5. Increasing Parallelization
- 6. Workload Management (WLM)


Equal Data Distribution

Common when sending from HF to Cloud; Parallelization; indexer data rebalance

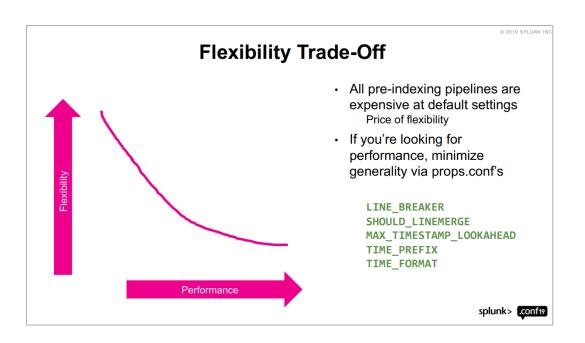
"Configure load balancing for Splunk Enterprise"

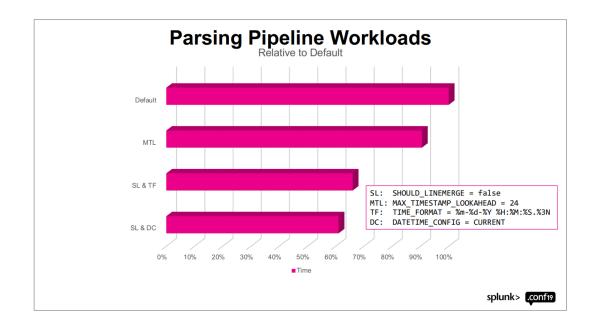
Forwarders with Load Balancing

"Indexing: Indexes and Volumes"

Equal Data Distribution

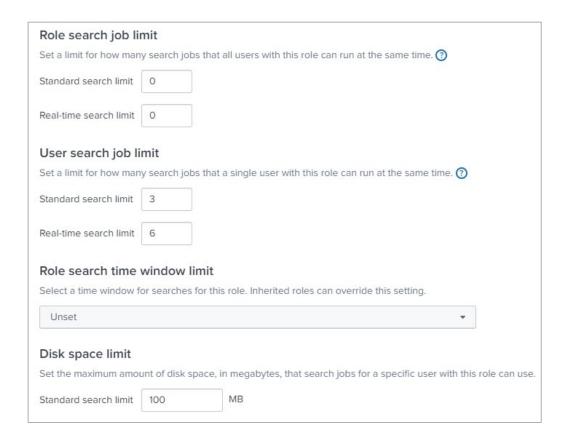
"Rebalance the indexer cluster"


Only for...


- On Prem
- Indexer Clusters
- People that like rules of 3;)

Efficient Data Onboarding

Learn more at .conf online: "PLA1486C – Understanding Splunk Performance and Making Hardware (Virtual/Physical) Choices"

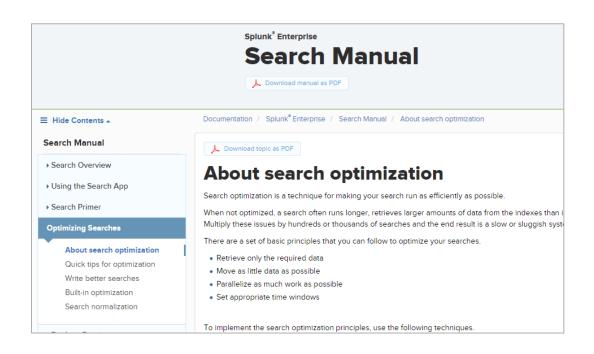


Restrictions on User Search

Search for "Create and manage roles with Splunk Web" on SplunkDocs

Searches consume compute
-> protect against new users

Learn about incentives @:


.conf online "FN1054 - Best Practices and Better Practices for Admins"

Lantern: "Enabling users with incentives"

Well Defined Searches

Monitoring Console's "Search Usage Statistics: Deployment" dashboard

Report Name/Search String \$	Search Runtime \$	Search Start \$	Earliest Time \$	Late
search13	5.67s	08/20/2020 17:52:10 -0400	Thu Aug 20 17:52:00 2020	Thu
search15	5.64s	08/20/2020 17:52:10 -0400	Thu Aug 20 17:52:00 2020	Thu
search12	5.59s	08/20/2020 17:52:10 -0400	Thu Aug 20 17:52:00 2020	Thu
search16	5.59s	08/20/2020 17:52:10 -0400	Thu Aug 20 17:52:00 2020	Thu
search14	5.55s	08/20/2020 17:52:10 -0400	Thu Aug 20 17:52:00 2020	Thu
search6	5.54s	08/20/2020 17:52:10 -0400	Thu Aug 20 17:52:00 2020	Thu
search11	5.49s	08/20/2020 17:52:10 -0400	Thu Aug 20 17:52:00 2020	Thu
bundle_rep_log_base	5.47s	08/20/2020 17:52:10 -0400	Thu Aug 20 17:52:00 2020	Thu
search10	5.04s	08/20/2020 17:52:10 -0400	Thu Aug 20 17:52:00 2020	Thu
search5	5.01s	08/20/2020 17:52:10 -0400	Thu Aug 20 17:52:00 2020	Thu

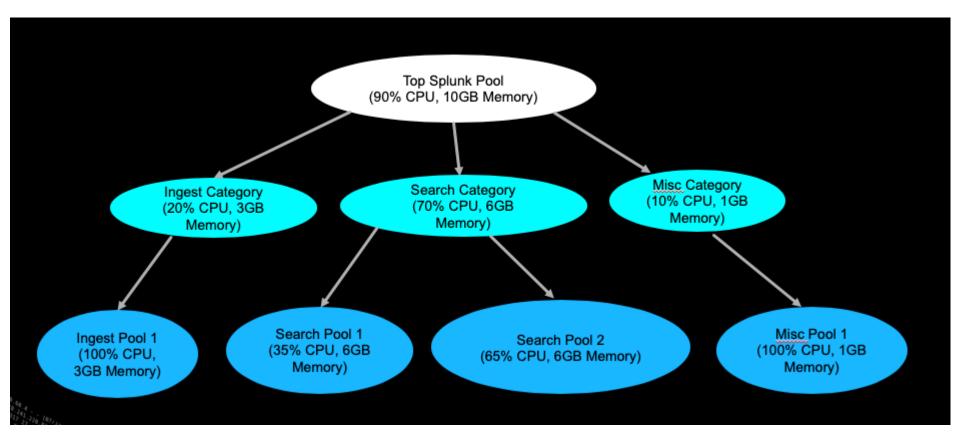
Increasing Parallelization

Search "Parallelization settings" in the SplunkDocs

Increasing Parallelization

Search "Parallelization settings" in the SplunkDocs

Cloud Managed. But on prem HFs.


Could drive up utilization, which is good for on prem

Could be impacting if insufficient resources available

Workload Management (WLM)

Search "About workload management" on SplunkDocs

Best Practices

- 1. Equal Data Distribution
- 2. Efficient Data Onboarding
- 3. Restrictions on User Search
- 4. Well Defined Searches
- 5. Increasing Parallelization
- 6. Workload Management (WLM)

Closing

Legal Blah

Public legal definitions of licensing can be found at *Splunk Offerings Purchase Capacity and Limitations* on splunk.com: https://www.splunk.com/en_us/legal/licensed-capacity.html

Infrastructure based licensing is described publicly on the *Data-to-Everything Pricing FAQ* page on splunk.com: https://www.splunk.com/en_us/software/pricing/faqs/data-to-everything.html#infrastructure-pricing

Success plans are outlined on the support and services page on splunk.com: https://www.splunk.com/en_us/support-and-services/vcpu-plans.html

Call to Action

- 1. Collaborate: #licensing
 - Sign Up @ http://splk.it/slack
- 2. Monitoring Console
- 3. PLA1486C Understanding Splunk Performance and making hardware (virtual/physical) choices
- 4. PLA1826C Taming wild resources. Tips to manage and remediate busy Splunk instances.
- 5. PLA1582C Cloud Monitoring Console Tips and Tricks for the Splunk Cloud admin
- 6. On Demands Services like "Ask an Expert"
 - https://www.splunk.com/pdfs/legal/splunk-on-demandservices-catalog.pdf

Thank You

Please provide feedback via the

SESSION SURVEY

