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Why Are We Here?

• You maybe have a bunch of important searches that use join, append or appendcols.

• You might have been told that join/append are bad.  You might be irritated because they still seem 
totally necessary.

• However there’s a nagging suspicion you have, that maybe the eggheads are right, and you can 
rewrite these searches to be better.  

• And that possibly then you could greatly reduce resource load on your search heads
(And make the searches faster too). 
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Why Is This Guy Qualified to Give This Talk?

• Former Splunk Mad Scientist and 
Principal UI Developer 2005-2010

• This is Rob Das and I in the booth at 
Linuxworld in 2005, the week we all 
launched Splunk 1.0.
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OK, So… I Heard 2010.  
How About the Last 10 Years?
• I was the karma leader on Answers 

once upon a time, and it was in large 
part from answering search language 
questions in this particular area.  

• Also the docs for this stuff still uses a 
flowchart I made ages ago.
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OK, So… 2016?  Keep Going…
• I never stopped working with 

Splunk fulltime in a technical 
role and our main product for 
Cisco CallManager has to do 
some pretty hairy SPL.
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The Talk
assuming we ever get to it

… what’s it like? 

1) Why are the bad things bad?
Why join and append are evil. 
(Why transaction is chaotic neutral)

2) How to be good.  How to ‘use stats’ even when it 
really looks like you can’t.
You may get a tendency to say "I wonder if we can use 
some conditional eval to fix this." 

3) Do I have to? Are my searches really bad?
(iow is the SH stuck doing must of the work?)
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The Talk
The tl;dr version

1) Join and append really don’t scale.
They’re designed to be last resorts for weird cases.
They underuse the IDX tier and overload the SH.
raising limits.conf keys only helps a little.

2) You use lots of OR and lots of eval in your SPL.
Sourcetype=A OR sourcetype=B
You send a terrible ugly heap of different events down 
the pipeline and let eval/stats and friends sort them out 
for you.  It’s crazy unintuitive.

3) The Job Inspector is your friend.
And avoid the table command, unless you need to 
break mapreduce and thus measure how much work it 
was doing before
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Part 1: Why Are the 
Bad Things Bad?
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Naming Things – It’s Hard.
The names are really unfortunate and send users off the wrong way.

What would SQL do?  you will search the splunk docs for “join”.
docs are using this word “transaction”.  "got it. there's a transaction command".
I need to like… tack on another column.  woo hoo "appendcols" ftw!!

vs

Stats?  — "nah, I don't need statistics right now, I need to group things.“
NO. Stats eval and lookups should be your first tools.
Append/appendcols/join and even transaction should be last resorts. 
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What’s Wrong With the Join and
Append Commands?
Fundamentally slow, and as soon as you push any real volume of data through 
them, broken.

• truncation if you exceed 50,000 rows.  (and/or oom anxiety)

• Your job is quietly autofinalized (another kind of truncation) if you exceed execution time.

• 2 jobs instead of 1.

• Potentially getting the same data off disk twice.

• You might not even *realize* that you're hitting autofinalize and row-truncation limits, but they are 
nonetheless making your results wrong.

• Breaking Map/Reduce, OR making it less efficient.  I.e. forcing splunk to pull more data and 
processing back to the search head.  

• As a kind of “worst-practice”, it proliferates quickly. 
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Search Head Says It’s Tired – You Do It.
Sourcetype=cdr type=outgoing | stats sum(duration) by device_type

• YOU ARE NOW THE SEARCH HEAD!

• You don’t know the best way to do this.

• But… what’s the worst way?

• Let’s have indexers send us ALL events
We’ll store them all
We’ll do all the search filtering locally 
We’ll add up all the durations!!!!
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OK That Was Awful.  

network: So you like packets eh? 

Filesystem/RAM – pulling everything to one host, there’s just WAY too much data!

Sourcetype=cdr type=outgoing | stats sum(duration) by device_type

Is preview on?  
Then the UI adds another layer of 
hellish load by forcing a finalize 
every few seconds.
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Next – Lets Try Something a Little 
Less Terrible

sourcetype=cdr type=outgoing | stats sum(duration) by device_type

• So let’s at least send this part out. Then the indexers can send only the matching events over 
the wire.

• MUCH better. We’re still getting an ungodly number of rows and doing  a lot of math, so it still 
sucks but we are now at least doing “distributed search”. 

• Still a MASSIVE load on the SH’s disk I/O, RAM and CPU though.
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Search Head Says It’s Tired – You Do It

What if there was a way we could kind of… make the indexers do ALL the work. 

Like, what if each indexer only sent back a tiny little table, literally like this:  

At least that was doing “distributed search. Let’s do “distributed reporting” too.

device_type sum(duration)

softphone 2422312
hardphone 858224
conference_bridge 582023
ip_communicator 590564
Jabber 18948

sourcetype=cdr type=outgoing | stats sum(duration) by device_type
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And That’s What Happens

• It’s how Splunk does not just “distributed search” but “distributed reporting”.   

• It’s how you generally scale by adding indexers – the SH tier doesn’t (shouldn’t) have much work.

• It’s the “Reduce” part of splunk’s “Map Reduce” implementation. Or at least a really big part of it. 

• These little tables are sometimes called the “sufficient statistics” – half-baked cakes cooked 
by the indexers. 
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How It’s Actually Implemented =
“pre commands”

sourcetype=cdr type=outgoing     |    stats sum(duration) by device_type

Distributable Streaming Portion
Will include all distributable 

streaming commands 
(eval, where, rename etc..)
Indexers run this part PLUS 

“prestats”

sourcetype=cdr type=outgoing 
| prestats sum(duration) by 
origDeviceName

Transforming Portion
Starts at the first non-"distributable 

streaming" command, goes all the way to the 
end. 

SH runs just these commands at the end 
to tie it all together.
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And This Has All Been Happening 
Automatically!



©  2 0 2 0  S P L U N K  I N C .

Unless… You’ve Been Inadvertently Writing 
Suboptimal SPL.
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… Like That Ever Happens.
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Part 2:
How to Be Good
How to ‘use stats’ even when it feels like
you can’t
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Example 1
(I can't use stats)     …cause I don't want to and hey there’s a join command

Awful 

sourcetype=db | stats sum(rows) by pid

+ 

sourcetype=app | stats sum(cputime) by pid

= 

sourcetype=db
| join pid [

search sourcetype=app 
| stats sum(rows) sum(cputime) by pid
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Example 1
(I can't use stats)     …cause I don't want to and hey there’s a join command

Awful

A little 
better

sourcetype=db
| join pid [search sourcetype=app]
| stats sum(rows) sum(cputime) by pid

sourcetype=db | stats sum(rows) as rows by pid
| join pid [

search sourcetype=app 
| stats sum(cputime) as cputime by pid

]
| stats sum(rows) sum(cputime) by pid
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Example 1
Just send the whole mess along to stats/chart/timechart.  

Bad

BEST

sourcetype=db
| join pid [search sourcetype=app]
| stats sum(rows) sum(cputime) by pid

sourcetype=db OR sourcetype=app 
| stats sum(rows) sum(cputime) by pid
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Example 2
… because I need to join first and THEN I need stats to do this other thing

Awful

Good

sourcetype=cucm_cdr
| join callId [search sourcetype=cucm_cmr]              
| stats perc5(MLQK) by type

Nope – just use stats twice.  

sourcetype=cucm_cdr OR sourcetype=cucm_cmr
| stats values(MLQK) as MLQK 

last(type) as type 
by callId

| stats perc5(MLQK) by type

NOTE: values() is underrated for single valued fields – just because your 
field is single valued today doesn't mean it will be tomorrow.  
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sourcetype=db
| rename processId as pid
| join pid [search sourcetype=app]
| stats sum(rows) sum(cputime) by pid

Just needs some "conditional eval".  
Should be:

sourcetype=db OR sourcetype=app 
| eval pid=if(sourcetype=="db",processId,pid)
| stats sum(rows) sum(cputime) by pid

Let's say one side calls it “pid” and the other calls it “processId”

Why if() and not coalesce()?
This amounts to a preference, but 
coalesce can betray you unexpectedly if 
assumptions change, or when the same 
coalesce statement is pasted around.   
Case() and if() are explicit and any 
assumptions they make are clearer to 
future readers.1

Example #3
because the field names are different, but when I use rename it damages the “good” one.
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sourcetype=db
| rex field=pid mode=sed "s/cruft//g"
| join pid [search sourcetype=app]
| stats sum(rows) sum(cputime) by pid

Just needs more conditional eval
sourcetype=db OR sourcetype=app 
| eval 

pid=if(sourcetype=="db",replace(pid,"cruft",""),pid)
| stats sum(rows) sum(cputime) by pid

ALSO you can sometimes use this to hide field(s) from the 
bad thing.

Example #4
I need some extra SPL to clean up one side, but if it touches the other rows it damages them.
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Part 3:
Do I have to?
How bad are my searches, really?
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How to know how you’re doing (review)?

• Click "Job" then "Inspect Job".
• Scroll to the bottom
• Click 'search job properties' to open 

the full set of keys
• Ctrl-F search for
• "remoteSearch" is what goes to the 

indexers.
• "reportSearch" stays on the SH
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Do I Have to?
Maybe Not!

Small data , fast searches, rows<<50K  –
none of this really matters. Pick your battles

High cardinality “by id” searches– because 
of the nature of the query, sometimes even 
prestats is outputting a huge number of rows 
too. This cuts down on potential resources 
saved at the SH. 

I only have a couple indexers anyway. 

Search Heads are free to me because 
someone else maintains them  wait NO 
don’t be evil!
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What About Streamstats and Eventstats?

• Yes. Super powerful.  Super useful. They deserve a whole talk to themselves.

• However despite its name streamstats is not a "distributable streaming" command, nor is 
eventstats and therefore they force the data to come back to the Search Head there.

• So while many transaction use cases that aren't simple "by id" transactions can be refactored to 
use a combination of eval and streamstats + stats, you'll still be breaking MapReduce.   
You might be better off sticking with transaction.

• Test it both ways !!
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• When you have a big expression with 2 or more transforming commands, try and rework it so that the first 
stats command will do most of the work reducing the weight involved.

• Sometimes you can eliminate the second one entirely. 
• Sometimes you can "set the table" really well with eval and streaming commands such that one big stats 

command can work a miracle in one pass, and thus do it out at the indexers too.

Trick – Walk Softly and Carry a Big 
Transforming Command

| eval {type}_duration=duration
| eval {type}_callId=callId
| `crazypants_macro_to_calculate_and_mvexpand_name_and_number_fields`
| stats dc(incoming_callId) as incoming dc(outgoing_callId) as outgoing 
dc(internal_callId)  as internal dc(callId) as total 
sum(incoming_duration) as incoming_duration sum(outgoing_duration) as
sum(duration) as total_duration values(name) as name by number
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Trick – Break It Into Two Problems
• Sometimes when there’s just way too much going on.

• Look at what pieces only change rarely. Imagine if THOSE get baked out daily as a lookup, does the rest of 
the problem get easier?

• Simple example -- I want to know the phones that have NOT made a call in the last week (and have thus 
generated no data)   I could do a search over all time, then join with the same search over the last week.   

• Better - make a lookup that represents “all phones that have ever been seen” (ie with one hugely expensive 
all time search). Then bake that out as a lookup, then:

<terms> | eval present=1| inputlookup all_phones_ever append=t
| stats values(present) as present by extension 
| search NOT present=1
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If There’s a Way, You Can Find It

• Even in super complex reporting situations, even after you've beaten it to death and given up, there are 
strange helpful people on Slack/Answers who have arcane knowledge and can totally  help you. 

• The #search-help and #tinfoilstats channels on Slack are there to help.
• Make sure you give sufficient details and this generally means posting the SPL (yes, the raw actual 
• Version not a simplified version)
• Thanks to everyone who made Virtual Conf happen,  who made the SplunkTrust conf track happen!  
• And thanks for watching/reading/listening!
• Please send any and all feedback or thoughts to 
• nick@sideviewapps.com
• And please do take the session survey.

Or at least…. you can find crazy people in the community who will help you find it

mailto:nick@sideviewapps.com


SESSION SURVEY
Please provide feedback via the
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Hey!
You clicked past the 
fake ending slide! 

Nice work
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Glossary
Here are those official Splunk docs about grouping data from different sources (the page with the flow chart).
• https://docs.splunk.com/Documentation/Splunk/8.0.5/Search/Abouteventcorrelation
• https://docs.splunk.com/Documentation/Splunk/8.0.5/Search/Abouttransactions
• Subsearch: technically this refers to SPL expressions in square brackets, in a plain old search clause. 
• https://docs.splunk.com/Documentation/Splunk/8.0.5/Search/Aboutsubsearches
• And conversely the term imo should NOT refer to how square brackets are used by the join or append commands.
• Finalizing - is basically when you click the "stop" button on a running search. Splunk stops getting new events off disk and 

kind of "wraps up" and returns the partial results. It might look complete but it's not. 
• Autofinalizing - is when this is done automatically (and quietly) on a search or subsearch.
• Disjunction - is just a fancy word for using "OR" to join two sets of searchterms together.
• Join/append – You can read this but… pretty much every time it tells you join or append is OK, it's wrong. 
• https://docs.splunk.com/Documentation/Splunk/8.0.5/SearchReference/SQLtoSplunk
• So remember I said that.  Note I avoided saying "inner left" join or any such sqlism here in this talk.  They can all be done. If 

you were hoping for a mapping of how to do each one with stats and eval, I am sorry to disappoint.  

https://docs.splunk.com/Documentation/Splunk/8.0.5/Search/Abouteventcorrelation
https://docs.splunk.com/Documentation/Splunk/8.0.5/Search/Abouttransactions
https://docs.splunk.com/Documentation/Splunk/8.0.5/Search/Aboutsubsearches
https://docs.splunk.com/Documentation/Splunk/8.0.5/SearchReference/SQLtoSplunk
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Problem – I Need More “Distinctness”
• In this example,  we have “OrderNo”,  and then “start” and “end” that are both times.  The need 

was to calculate for each Service, the average time elapsed per order.   The trick was that there 
were often numerous transactions per OrderNo and we had to treat each separately when 
calculating averages.   

• We relied on an assumption – that the Orders would never have interleaved transactions, and we 
used streamstats to supply the extra “distinctness”
<search string>
| streamstats dc(start_time) as transaction_count by OrderNo
| stats earliest(start_time) as start_time earliest(stop_time) as stop_time by 
OrderNo, transaction_count, Service 
| eval duration=tostring(stop_time-start_time) 
| stats mean(duration) as avg_duration by Service 
| table Service, avg_duration
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Problem – I Have Gaps In My Ids
• I don’t really have one good id – instead I have two bad ones. Each side of the data has its own.  

Luckily, there are some events that have both. This feels a lot like a transaction use case and it 
might be. (it might even be a searchtxn use case)

• But whenever you have to kind of “fill in” or “smear out” data across a bunch of rows, also think of 
eventstats and streamstats.   

• Here we use eventstats to smear the JSESSIONID values over onto the other side.

sourcetype=access_combined OR sourcetype=appserver_log
| eventstats values(JSESSIONID) as JSESSIONID by ecid
| stats avg(foo) sum(bar) values(baz) by JSESSIONID
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Problem – I Need The Raw Event Data

• Do you really?   I mean both "need" it and get it "for free" ? 

• But for debugging, yes absolutely the _raw can be super useful cause transaction keeps you in 
the "events' view.    However you can get some debugging mileage out of:

… | stats list(_raw) as events by someId

• Or even this trick, which forces ANY transforming result back into the "events" tab:   

Foo NOT foo 
| append [search SEARCHTERMS | stats count sum(kb) as kb list(_raw) as _raw by 
clientip host]

And with transaction I get the _raw for free
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Problem – I Need To Search Two Different 
Timeranges
But the two sides have different timeranges so I need join/append.  I need to see, out of the users active in the 
last 24 hours, the one with the highest number of incidents over the last 30 days.

sourcetype=A | stats count by userid (last 24 hours)
sourcetype=B | stats dc(incidentId) by userid (Last 7 days)

First back up – is the big one so static it could be a lookup?   

sourcetype=B | stats dc(incidentId) by userid | outputlookup user_incidents_7d.csv

OR Is the second one so small and cheap that it could be a simple subsearch?

sourcetype=B [search sourcetype=A earliest=-24h@h | stats count by userid | fields 
userid ] 
| stats dc(incidentId) by userid
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Problem – I Need To Search Two Different 
Timeranges
Nice try but that wont work..

No and the final results need to end up with values from that "inner" search, so I can't 
use a subsearch.

sourcetype=A | stats count values(host) by userid (-24h)
sourcetype=B | stats dc(incidentId) by userid (-7d)

No problem. Still stats.    
sourcetype=A OR sourcetype=B 

| eval isRecentA=
if(sourcetype=A AND _time>relative_time(now(), "-24h@h"),1,0)

| where sourcetype=B OR isRecentA=1
| eval hostFromA=if(sourcetype=A,host,null())
| stats dc(incidentId) values(hostFromA) as hosts by userid
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Problem – I Need To Search Two Different 
Timeranges
But…

But that search…
sourcetype=A OR sourcetype=B 

| eval isRecentA=
if(sourcetype=A AND _time>relative_time(now(), "-24h@h"),1,0)

| where sourcetype=B OR isRecentA=1
| eval hostFromA=if(sourcetype=A,host,null())
| stats dc(incidentId) values(hostFromA) as hosts by userid

… it gets lots of A off disk and then throws it away 
True! it's out at the indexers at least!   "At least make the hot air go far away?".
But yes, the corresponding join may indeed be less evil here.   Test it!  
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Problem – I Need Chart To Mix Split-by 
Columns With Normal Columns
Aka “clown car techniques”

• I need to have rows that are users,  and then some columns that are from a “split 
by” field expression, and some other columns that are NOT from that splitby.

• Sometimes this is expressed as needing to join the result output of two *different* 
transforming commands, ie:

sourcetype=A | chart count over userid by app 

sourcetype=B | stats sum(kb) by userid

• For each user I need the eventcounts across the 5 apps,  PLUS the total KB 
added up from sourcetype B.   This totally feels like what join is made for.  1
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Clown Car, Continued
• Nope. Stats.     You may have heard that "chart is just stats wearing a funny hat".
• Or… if you haven't heard that before, well you've heard it now. 
• It turns out that you can always refactor chart into a stats and an xyseries

| chart count over userid by application

• Is equivalent to

| stats count by userid application
| xyseries userid application count
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Clown Car, Continued
It’s a little awful – you mash all the values into one clown-car field, and group by 
that, then unpack them all from the clown car afterward. 
Here is a SIMPLE example.  

sourcetype=A OR sourcetype=B 
| stats sum(kb) as kb count by userid application 
| eval clown_car = userid + ":::" + kb
| chart count over clown_car by application
| eval clown_car=mvsplit(clown_car, ":::")
| eval userid=mvindex(clown_car, 0)
| eval kb=mvindex(clown_car, 1)
| table userid kb *
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