
This presentation may contain forward-looking statements regarding future events, plans or the
expected financial performance of our company, including our expectations regarding our products,
technology, strategy, customers, markets, acquisitions and investments. These statements reflect
management’s current expectations, estimates and assumptions based on the information currently
available to us. These forward-looking statements are not guarantees of future performance and
involve significant risks, uncertainties and other factors that may cause our actual results,
performance or achievements to be materially different from results, performance or achievements
expressed or implied by the forward-looking statements contained in this presentation.

For additional information about factors that could cause actual results to differ materially from those
described in the forward-looking statements made in this presentation, please refer to our periodic
reports and other filings with the SEC, including the risk factors identified in our most recent quarterly
reports on Form 10-Q and annual reports on Form 10-K, copies of which may be obtained by visiting
the Splunk Investor Relations website at www.investors.splunk.com or the SEC's website at
www.sec.gov. The forward-looking statements made in this presentation are made as of the time and
date of this presentation. If reviewed after the initial presentation, even if made available by us, on our
website or otherwise, it may not contain current or accurate information. We disclaim any obligation to
update or revise any forward-looking statement based on new information, future events or otherwise,
except as required by applicable law.

In addition, any information about our roadmap outlines our general product direction and is subject to
change at any time without notice. It is for informational purposes only and shall not be incorporated
into any contract or other commitment. We undertake no obligation either to develop the features or
functionalities described, in beta or in preview (used interchangeably), or to include any such feature
or functionality in a future release.

Splunk, Splunk> and Turn Data Into Doing are trademarks and registered trademarks of Splunk Inc. in the United States and other countries. All other
brand names, product names or trademarks belong to their respective owners. © 2022 Splunk Inc. All rights reserved.

Forward-
Looking
Statements

03.10.22-15:28

© 2022 SPLUNK INC.

Fields, Indexed
Tokens, and You

Martin Müller
Principal Consultant | Consist

PLA1466B

© 2022 SPLUNK INC.

Martin Müller
Principal Consultant
Consist Software Solutions GmbH

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

• Supercharged searches!
• I want you to turn this…

…into this!

…this is bad:

Why Are We Here?

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

• Supercharged searches!
• I want you to turn this…

…into this!

…this is bad:

Why Are We Here?

© 2022 SPLUNK INC.

Session Objectives
• Understand how Splunk® turns a log file into indexed tokens

• Breakers & segmentation
• Learn how your searches make good use of indexed tokens (or not)

• Lispy
• Fields

© 2022 SPLUNK INC.

Breakers &
Segmentation
How does Splunk® break events into
indexed tokens?

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

How Splunk® Chops Up an Event

• Read in a line of data, apply segmentation, store tokens in TSIDX files
• Minor breakers: / : = @ . - $ # % \ _
• Major breakers: \r\n\s\t [] <> () {} | ! ; ‚ ‘ " etc.
• Can be configured in segmenters.conf – but very rarely should!

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

How Splunk® Chops Up an Event

• Read in a line of data, apply segmentation, store tokens in TSIDX files
• Minor breakers: / : = @ . - $ # % \ _
• Major breakers: \r\n\s\t [] <> () {} | ! ; ‚ ‘ " etc.
• Can be configured in segmenters.conf – but very rarely should!

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

How Splunk® Chops Up an Event

• Read in a line of data, apply segmentation, store tokens in TSIDX files
• Minor breakers: / : = @ . - $ # % \ _
• Major breakers: \r\n\s\t [] <> () {} | ! ; ‚ ‘ " etc.
• Can be configured in segmenters.conf – but very rarely should!

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

Inspect a TSIDX File (CLI)

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

splunk cmd walklex ..\var\lib\splunk\<index>\db\<bucket>\<filename>.tsidx ""
my needle:
2 1 host::localhost
3 1 -
4 1 0
5 1 0200
6 1 03
7 1 1
8 1 11

9 1 127
10 1 127.0.0.1
11 1 18
12 1 2016
13 1 24
14 1 24/jun/2016:18:11:03.404
15 1 404
27 1 jun
29 1 mm

Each token is a pointer
to the raw event

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

Inspect a TSIDX File (CLI)

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

splunk cmd walklex ..\var\lib\splunk\<index>\db\<bucket>\<filename>.tsidx ""
my needle:
2 1 host::localhost
3 1 -
4 1 0
5 1 0200
6 1 03
7 1 1
8 1 11

9 1 127
10 1 127.0.0.1
11 1 18
12 1 2016
13 1 24
14 1 24/jun/2016:18:11:03.404
15 1 404
27 1 jun
29 1 mm

Each token is a pointer
to the raw event

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

Inspect a TSIDX File (CLI)

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

splunk cmd walklex ..\var\lib\splunk\<index>\db\<bucket>\<filename>.tsidx ""
my needle:
2 1 host::localhost
3 1 -
4 1 0
5 1 0200
6 1 03
7 1 1
8 1 11

9 1 127
10 1 127.0.0.1
11 1 18
12 1 2016
13 1 24
14 1 24/jun/2016:18:11:03.404
15 1 404
27 1 jun
29 1 mm

Each token is a pointer
to the raw event

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

Inspect a TSIDX File (SPL™)

• New search command in 7.3: | walklex
• Caveats apply around hot buckets, full list in docs:

https://docs.splunk.com/Documentation/Splunk/8.2.5/SearchReference/walklex
• Works in SplunkCloud® too, no need for CLI access

• List indexed fields: | walklex index=_internal type=field
• List indexed values: | walklex index=_internal type=fieldvalue
• Search for tokens: | walklex index=_internal type=term prefix=foo

https://docs.splunk.com/Documentation/Splunk/8.2.5/SearchReference/walklex

© 2022 SPLUNK INC.

Lispy
How does Splunk® find events
matching your search?

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

Lispy??

• Lispy expressions are predicates Splunk® platform uses to locate events
• Awesome for debugging and performance tuning

• Square brackets, prefix notation for operators? That‘s lispy.
• Search for splunk.conf 2022 – Las Vegas, NV and you get this:
[AND 2022 conf las nv splunk vegas]

• All events matching the predicate are scanned
• “Scanned” includes these steps: Read journal slice off disk, uncompress, fields, eventtypes, tags, lookups, postfilter

• The fewer events you need to scan, the faster your search

• Lispy is visible in search.log: <timestamp> INFO UnifiedSearch - base lispy: [...]
• Check lispy efficiency by comparing eventCount with scanCount from the Job Inspector

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

How to Find Naughty Searches?

 index=_audit search_id TERM(action=search) (info=granted OR info=completed)
| transaction search_id startswith=(info=granted) endswith=(info=completed)
| eval lispy_efficiency = event_count / scan_count
| where scan_count > 100 AND total_run_time > 5 AND lispy_efficiency < 0.5
| table _time total_run_time event_count scan_count
 lispy_efficiency user savedsearch_name search

• Adjust thresholds as needed
• Finds some false positives, e.g. itself 😅
• Stats? Sure: index=_audit search_id TERM(action=search) (info=granted OR info=completed)

| stats first(_time) as _time first(total_run_time) as total_run_time

 first(event_count) as event_count first(scan_count) as scan_count first(user) as user

 first(savedsearch_name) as savedsearch_name first(search) as search by search_id

| eval lispy_efficiency = event_count / scan_count

| where lispy_efficiency < 0.5 AND total_run_time > 5 AND scan_count > 100

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

Building the Lispy for a Search

• Every breaker is a major breaker
• Remove duplicates, sort alphabetically

• 127.0.0.1 becomes [AND 0 1 127]
• Load all events off disk that contain all three tokens – scanCount
• Filter for 127.0.0.1 in the raw event – eventCount

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

AND and OR Behave

Search Lispy

foo bar (implicit AND) [AND bar foo]

foo OR bar [OR bar foo]

(a AND b) OR (c AND d) [OR [AND a b] [AND c d]]

(a OR b) AND (c OR d) [AND [OR a b] [OR c d]]

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

NOT Can Be Tricky

• NOT bad works as expected: [NOT bad]
• Load all events that don‘t have that token

• How do you translate NOT 127.0.0.1?
• [NOT [AND 0 1 127]]?

127.0.0.1 is a good IP

127.0.1.1 is a bad IP

127.1.0.0 is a bad IP

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

NOT Can Be Tricky

• NOT bad works as expected: [NOT bad]
• Load all events that don‘t have that token

• How do you translate NOT 127.0.0.1?
• [NOT [AND 0 1 127]]?
• That would rule out 127.0.1.1!

127.0.0.1 is a good IP

127.0.1.1 is a bad IP

127.1.0.0 is a bad IP

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

NOT Can Be Tricky

• NOT bad works as expected: [NOT bad]
• Load all events that don‘t have that token

• How do you translate NOT 127.0.0.1?
• [NOT [AND 0 1 127]]?
• That would rule out 127.0.1.1!
• The sad reality: [AND]
• Same story with NOT "foo bar"

127.0.0.1 is a good IP

127.0.1.1 is a bad IP

127.1.0.0 is a bad IP

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

Wildcards

• Filter for partial matches of indexed tokens
• Imagine indexed tokens are stored as a tree, where each

node contains a list of events
• Beware of wildcards at the beginning!

Search Lispy

foo* [AND foo*]

f*o [AND f*o]

*foo [AND]

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

TERM()

• Force lispy to use a complex token as a whole, ignoring breakers
• TERM(127.0.0.1) becomes [AND 127.0.0.1]
• Allows leading wildcards, TERM(*foo) becomes [AND *foo]
• Enables inexact tstats queries \o/
| tstats count where index=_* TERM(*ucketMover)

• Can be used with fields: component=TERM(*ucketMover)

• Beware: Crawling the index for leading wildcards is IO-intensive
• Related: CASE(FoO) doesn’t change lispy, just post-filters for case sensitivity

© 2022 SPLUNK INC.

Fields
How are fields used to find events?

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

• Search-time fields are extracted from the raw event while the search runs
• Default assumption: Field values are made up of whole indexed tokens
• exception=java.lang.NullPointerException yields [AND java lang NullPointerException]
• Great flexibility, decent search performance, some pitfalls

• Index-time fields are stored in tsidx files during ingest
• Search for source=foo timestartpos>0, get [AND source::foo [GT timestartpos 0]]
• Great search performance, no flexibility, some disk space overhead

Search-Time Vs Index-Time Fields

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

• Splunk® assumes all fields are search-time fields unless defined otherwise
• Force treatment as index-time field by searching index_delta::8 to get [EQ index_delta 8]

• Global settings in fields.conf have always been available: [index_delta] INDEXED = true
• Turns index_delta=8 into [EQ index_delta 8] for all sourcetypes

• Teach Splunk® 8.1+ with scoped fields.conf: [sourcetype::splunkd::index_*] INDEXED = true
• [OR [AND sourcetype::splunkd [EQ index_delta 8]] ← indexed field for splunkd only
 [AND 8 [NOT sourcetype::splunkd]] ← search-time behavior for the rest
]

Searching For Index-Time Fields

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

• Call an eval expression at search time: [stanza] EVAL-vendor="Splunk®"
• Field values don’t need to be indexed tokens, harder to filter in lispy
• TL;DR: coalesce() and if() are good

• Some types of expressions propagate into lispy (fast)
• coalesce(dest_host, dest_ip) and if(cond, dest_host, dest_ip) are lispy’d like a dest_host OR dest_ip
• lower(dest_host) is treated like dest_host
• vendor="Splunk®" scans the entire sourcetype but filters well for others: [OR sourcetype::splunkd splunk ®]
• vendor="Buttercup" filters well: [AND buttercup]

• Some types of expressions don’t propagate into lispy (slow)
• case(cond1, val1, cond2, val2) is not lispy’d like val1 OR val2 → always use if()
• nullif(val, "-") is not lispy’d → always use if()
• Value-changing operations such as arithmetic or string operations can’t be propagated or worked around

• With some expressions it depends
• lower(coalesce(dest_host, dest_ip)) is slow, coalesce(lower(dest_host), lower(dest_ip)) is fast ¯_(ツ)_/¯

Calculated Fields

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

• Access logs, search for server errors: status>=500
• What indexed token to scan for? None, load all the things: [AND]

• Can be solved by listing values: status IN (500,501,502,503,504,505,506,507,508,510,511)
• Can be solved with a lookup of known server error codes (CIM App)
• Can be solved with an indexed field

• Non-solution: status=5*, lispy is [AND 5*]
• Too many events have a token beginning with 5 somewhere: times, IPs, bytes, versions, etc.
• Really, really, REALLY bad: status=2*

• Many events contain nearly-unique 2022-02-22T22:22:22.222222222Z tokens, can be very slow

Comparisons

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

• 2022-06-15 12:34:56.789 uid=2022 syscall=2 ...
• Search for uid=2022, get [AND 2022]
• Token 2022 is not very unique, scans all events from that year
• Common offenders: Small numbers, true, yes, ERROR, etc.

• Can be solved with an indexed field
• Can sometimes be solved with TERM(uid=2022)

• Beware of uid="2022" in your raw event – major breakers break TERM()

Value Uniqueness

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

• NOT bad worked well: [NOT bad]
• What about NOT field=bad?
• Index-time? No problem: [NOT field::bad]
• Search time? [NOT bad]?

Remember NOT? Tricky…

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

• NOT bad worked well: [NOT bad]
• What about NOT field=bad?
• Index-time? No problem: [NOT field::bad]
• Search time? [NOT bad]?

• That would rule out events like this: field=good otherfield=bad!
• Instead, Splunk® must scan all the events

Remember NOT? Tricky…

© 2022 SPLUNK INC.

Splunk .conf22 Template | TMPLT-FY23-101 | v1

Key
Takeaways

Job Inspector,
Job Inspector,
Job Inspector!

1. Love thy Job Inspector
2. Think of lispy when writing searches
3. Level 2: Think in lispy
4. Carefully consider opportunities for

index-time fields
5. Give extra scrutiny to…

a. Searches using wildcards
b. Small numbers
c. Filtering with NOT – especially for fields
d. Calculated fields
e. These:

© 2022 SPLUNK INC.

Thank You

