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• Supercharged searches!
• I want you to turn this…
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Session Objectives
• Understand how Splunk® turns a log file into indexed tokens

• Breakers & segmentation
• Learn how your searches make good use of indexed tokens (or not)

• Lispy
• Fields
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Breakers & 
Segmentation
How does Splunk® break events into 
indexed tokens?
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How Splunk® Chops Up an Event

• Read in a line of data, apply segmentation, store tokens in TSIDX files
• Minor breakers: / : = @ . - $ # % \ _
• Major breakers: \r\n\s\t [] <> () {} | ! ; ‚ ‘ " etc.
• Can be configured in segmenters.conf – but very rarely should!

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]
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Inspect a TSIDX File (CLI)

127.0.0.1 - mm [24/Jun/2016:18:11:03.404 +0200]

splunk cmd walklex ..\var\lib\splunk\<index>\db\<bucket>\<filename>.tsidx ""
my needle:
2 1 host::localhost
3 1 -
4 1 0
5 1 0200
6 1 03
7 1 1
8 1 11

9 1 127
10 1 127.0.0.1
11 1 18
12 1 2016
13 1 24
14 1 24/jun/2016:18:11:03.404
15 1 404
27 1 jun
29 1 mm

Each token is a pointer 
to the raw event
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Inspect a TSIDX File (SPL™)

• New search command in 7.3: | walklex
• Caveats apply around hot buckets, full list in docs: 

https://docs.splunk.com/Documentation/Splunk/8.2.5/SearchReference/walklex
• Works in SplunkCloud® too, no need for CLI access

• List indexed fields: | walklex index=_internal type=field
• List indexed values: | walklex index=_internal type=fieldvalue
• Search for tokens: | walklex index=_internal type=term prefix=foo

https://docs.splunk.com/Documentation/Splunk/8.2.5/SearchReference/walklex
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Lispy
How does Splunk® find events 
matching your search?
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Lispy??

• Lispy expressions are predicates Splunk® platform uses to locate events
• Awesome for debugging and performance tuning

• Square brackets, prefix notation for operators? That‘s lispy.
• Search for splunk.conf 2022 – Las Vegas, NV and you get this:
[ AND 2022 conf las nv splunk vegas ]

• All events matching the predicate are scanned
• “Scanned” includes these steps: Read journal slice off disk, uncompress, fields, eventtypes, tags, lookups, postfilter

• The fewer events you need to scan, the faster your search

• Lispy is visible in search.log: <timestamp> INFO  UnifiedSearch - base lispy: [ ... ]
• Check lispy efficiency by comparing eventCount with scanCount from the Job Inspector
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How to Find Naughty Searches?

 index=_audit search_id TERM(action=search) (info=granted OR info=completed)
| transaction search_id startswith=(info=granted) endswith=(info=completed)
| eval lispy_efficiency = event_count / scan_count
| where scan_count > 100 AND total_run_time > 5 AND lispy_efficiency < 0.5
| table _time total_run_time event_count scan_count
        lispy_efficiency user savedsearch_name search

• Adjust thresholds as needed
• Finds some false positives, e.g. itself 😅
• Stats? Sure: index=_audit search_id TERM(action=search) (info=granted OR info=completed)

| stats first(_time) as _time first(total_run_time) as total_run_time

        first(event_count) as event_count first(scan_count) as scan_count first(user) as user

        first(savedsearch_name) as savedsearch_name first(search) as search by search_id

| eval lispy_efficiency = event_count / scan_count

| where lispy_efficiency < 0.5 AND total_run_time > 5 AND scan_count > 100
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Building the Lispy for a Search

• Every breaker is a major breaker
• Remove duplicates, sort alphabetically

 
• 127.0.0.1 becomes [ AND 0 1 127 ]
• Load all events off disk that contain all three tokens – scanCount
• Filter for 127.0.0.1 in the raw event – eventCount
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AND and OR Behave

Search Lispy

foo bar (implicit AND) [ AND bar foo ]

foo OR bar [ OR bar foo ]

(a AND b) OR (c AND d) [ OR [ AND a b ] [ AND c d ] ]

(a OR b) AND (c OR d) [ AND [ OR a b ] [ OR c d ] ]
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NOT Can Be Tricky

• NOT bad works as expected: [ NOT bad ]
• Load all events that don‘t have that token

 
• How do you translate NOT 127.0.0.1?
• [ NOT [ AND 0 1 127 ] ]?

127.0.0.1 is a good IP

127.0.1.1 is a bad IP

127.1.0.0 is a bad IP
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Wildcards

• Filter for partial matches of indexed tokens
• Imagine indexed tokens are stored as a tree, where each 

node contains a list of events
• Beware of wildcards at the beginning!

Search Lispy

foo* [ AND foo* ]

f*o [ AND f*o ]

*foo [ AND ]
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TERM()

• Force lispy to use a complex token as a whole, ignoring breakers
• TERM(127.0.0.1) becomes [ AND 127.0.0.1 ]
• Allows leading wildcards, TERM(*foo) becomes [ AND *foo ]
• Enables inexact tstats queries \o/
| tstats count where index=_* TERM(*ucketMover)

• Can be used with fields: component=TERM(*ucketMover)

 
• Beware: Crawling the index for leading wildcards is IO-intensive
• Related: CASE(FoO) doesn’t change lispy, just post-filters for case sensitivity
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Fields
How are fields used to find events?
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• Search-time fields are extracted from the raw event while the search runs
• Default assumption: Field values are made up of whole indexed tokens
• exception=java.lang.NullPointerException yields [ AND java lang NullPointerException ]
• Great flexibility, decent search performance, some pitfalls

 
• Index-time fields are stored in tsidx files during ingest
• Search for source=foo timestartpos>0, get [ AND source::foo [ GT timestartpos 0 ] ]
• Great search performance, no flexibility, some disk space overhead

Search-Time Vs Index-Time Fields
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• Splunk® assumes all fields are search-time fields unless defined otherwise
• Force treatment as index-time field by searching index_delta::8 to get [ EQ index_delta 8 ]

 
• Global settings in fields.conf have always been available: [index_delta] INDEXED = true
• Turns index_delta=8 into [ EQ index_delta 8 ] for all sourcetypes

 
• Teach Splunk® 8.1+ with scoped fields.conf: [sourcetype::splunkd::index_*] INDEXED = true
• [ OR [ AND sourcetype::splunkd [ EQ index_delta 8 ] ] ← indexed field for splunkd only
     [ AND 8 [ NOT sourcetype::splunkd ] ]            ← search-time behavior for the rest
]

Searching For Index-Time Fields
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• Call an eval expression at search time: [stanza] EVAL-vendor="Splunk®"
• Field values don’t need to be indexed tokens, harder to filter in lispy
• TL;DR: coalesce() and if() are good

• Some types of expressions propagate into lispy (fast)
• coalesce(dest_host, dest_ip) and if(cond, dest_host, dest_ip) are lispy’d like a dest_host OR dest_ip
• lower(dest_host) is treated like dest_host
• vendor="Splunk®" scans the entire sourcetype but filters well for others: [ OR sourcetype::splunkd splunk ® ]
• vendor="Buttercup" filters well: [ AND buttercup ]

• Some types of expressions don’t propagate into lispy (slow)
• case(cond1, val1, cond2, val2) is not lispy’d like val1 OR val2 → always use if()
• nullif(val, "-") is not lispy’d → always use if()
• Value-changing operations such as arithmetic or string operations can’t be propagated or worked around

• With some expressions it depends
• lower(coalesce(dest_host, dest_ip)) is slow, coalesce(lower(dest_host), lower(dest_ip)) is fast ¯\_(ツ)_/¯

Calculated Fields
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• Access logs, search for server errors: status>=500
• What indexed token to scan for? None, load all the things: [ AND ]

 
• Can be solved by listing values: status IN (500,501,502,503,504,505,506,507,508,510,511)
• Can be solved with a lookup of known server error codes (CIM App)
• Can be solved with an indexed field

 
• Non-solution: status=5*, lispy is [ AND 5* ]
• Too many events have a token beginning with 5 somewhere: times, IPs, bytes, versions, etc.
• Really, really, REALLY bad: status=2*

• Many events contain nearly-unique 2022-02-22T22:22:22.222222222Z tokens, can be very slow

Comparisons
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• 2022-06-15 12:34:56.789 uid=2022 syscall=2 ...
• Search for uid=2022, get [ AND 2022 ]
• Token 2022 is not very unique, scans all events from that year
• Common offenders: Small numbers, true, yes, ERROR, etc.

 
• Can be solved with an indexed field
• Can sometimes be solved with TERM(uid=2022)

• Beware of uid="2022" in your raw event – major breakers break TERM()

Value Uniqueness
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• NOT bad worked well: [ NOT bad ]
• What about NOT field=bad?
• Index-time? No problem: [ NOT field::bad ]
• Search time? [ NOT bad ]?

Remember NOT? Tricky…
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• NOT bad worked well: [ NOT bad ]
• What about NOT field=bad?
• Index-time? No problem: [ NOT field::bad ]
• Search time? [ NOT bad ]?

 
• That would rule out events like this: field=good otherfield=bad!
• Instead, Splunk® must scan all the events

Remember NOT? Tricky…



© 2022 SPLUNK INC.

Splunk .conf22 Template  |  TMPLT-FY23-101  |  v1

Key 
Takeaways

Job Inspector,
Job Inspector,
Job Inspector!

1. Love thy Job Inspector
2. Think of lispy when writing searches
3. Level 2: Think in lispy
4. Carefully consider opportunities for 

index-time fields
5. Give extra scrutiny to…

a. Searches using wildcards
b. Small numbers
c. Filtering with NOT – especially for fields
d. Calculated fields
e. These:
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Thank You


