© 2025 SPLUNK LLC

Transform Splunk Enterprise |
Management with Integrated S _
CI/CD Pipelines

DEV1408

confzs

splunk>

© 2025 SPLUNK LLC

This presentation may contain forward-looking statements regarding future events, plans or the expected financial
Fo rwa rd - performance of our company, including our expectations regarding our products, technology, strategy, customers, markets,
acquisitions and investments. These statements reflect management’s current expectations, estimates and assumptions
°® based on the information currently available to us. These forward-looking statements are not guarantees of future
I Oo kl n performance and involve significant risks, uncertainties and other factors that may cause our actual results, performance or
g achievements to be materially different from results, performance or achievements expressed or implied by the
forward-looking statements contained in this presentation.

STG Te m e n II.S For additional information about factors that could cause actual results to differ materially from those described in the

forward-looking statements made in this presentation, please refer to our periodic reports and other filings with the SEC,
including the risk factors identified in our most recent quarterly reports on Form 10-Q and annual reports on Form 10-K,
copies of which may be obtained by visiting the Splunk Investor Relations website at www.investors.splunk.com or the SEC's
website at www.sec.gov. The forward-looking statements made in this presentation are made as of the time and date of this
presentation. If reviewed after the initial presentation, even if made available by us, on our website or otherwise, it may not
contain current or accurate information. We disclaim any obligation to update or revise any forward-looking statement
based on new information, future events or otherwise, except as required by applicable law.

In addition, any information about our roadmap outlines our general product direction and is subject to change at any time
without notice. It is for informational purposes only and shall not be incorporated into any contract or other commitment. We
undertake no obligation either to develop the features or functionalities described, in beta or in preview (used
interchangeably), or to include any such feature or functionality in a future release.

Splunk, Splunk> and Turn Data Into Doing are trademarks and registered trademarks of Splunk Inc. in the United States and
other countries. All other brand names, product names or trademarks belong to their respective owners.
© 2025 Splunk LLC. All rights reserved.

splunk>

From Code to Console:
Streamlining Splunk
Knowledge Object
Deployments with
CI1/CD

William ‘Hunter’
Jarvis

Developer / Splunk Enterprise TO |
Health Insurance Industry

confzs

splunk>

e Introduction

- Who are we?
- How do we use Splunk?
- Some quick statistics about our environment.

e What problem did we solve?
- How we initially did things.
- What problems did this create?
- The initial “solution”

e How did we solve it?

- What tools did we use?
- Overview of our CI/CD pipeline
- Automation walkthrough

e Workflow

- How do our customer use this automated workflow?
- What work is left for the admin to do?

e Benefits of CI/CD automation
o Q&A

© 2025 SPLUNK LLC

Who are we?
How do we use Splunk?

e Health Insurance company based in the SE
e Partners with Splunk for over 6 years

e Utilize Splunk for IT Operations

e Solely on-premise

e 5 tier search-head-cluster

e 14 tier indexer-cluster

e Intake approx. 1.8B events / day

e Currently service 1,000 - 1,100 users

e Approx. 1,100 alerts, 950 reports, 750
dashboards

e Run 175,000+ searches per day

© 2025 SPLUNK LLC

What problem
did we solve?

How we initially
did things

e Allowed users to publish via the web GUI

e Little to no oversight of
searches/scheduling

e No backup of Knowledge Objects

!
:
¥
"
#
»
.
’
.
.
»
i
.
.
.
.
L 4
&
L |

© 2025 SPLUNK LLC

What problems did
this create?

— S —
Difficult to track Allowed for the Search Risk of
privileges and Infroduction of schedules spikes KO/config loss.
who had them. ‘bad’ searches. at popular No revision

times. history.

The initial “solution”

e Moved to a service request model

e Admins worked service request for each customer need

e This soon lead to an unmanageable backlog of work

e Splunk admins were inundated with requests and customers were not happy with their wait times

© 2025 SPLUNK LLC

The
Problem

How do we allow our
customers to self-serve their
Splunk knowledge objects
and configurations while
maintaining oversight from
the Splunk admins?

-
_
-
-
»
-
.
-
.

*Bonus points for backups
and revision history*

© 2025 SPLUNK LLC

How did we
solve It?

© 2025 SPLUNK LLC

What tools did we use?

e GitHub Enterprise

- GitHub repositories store the code

- Acts as the backup to the knowledge objects stored on disk

- Commit history allows for version control and rollbacks
e Python

- Custom script developed in-house

- Obtains the git history and any altered or new code

- Accesses the Splunk search heads via the REST API to post or delete knowledge objects
e Jenkins

- CI/CD pipeline tool used kick-off the pipeline and run the script

- Handles cloning the repo and connectivity to the Splunk infrastructure

© 2025 SPLUNK LLC

Automation walkthrough

e Two GitHub repositories were established.
- One houses code and configurations for alerts, reports and lookups.
- Another for classic dashboard & dashboard studio code

e Each repository has:
- A python script to deploy the knowledge objects

- A config.json file which stores Splunk server IPs and API endpoints to make the POST and DELETE calls
etc.

- A permissions.json file storing the permissions and ownership configurations for the knowledge objects.

- A Jenkinsfile. This is the Jenkins configuration file written in Groovy.

© 2025 SPLUNK LLC

config.json (alerts/reports/lookups)

1 v {

2 "username”: "",

- "password”: """,

4 "use https”: true,

4 "url”: "<SPLUNK.SERVER.IP",

"url ga”: "<QA.SPLUNK.SERVER.IP",

7 "port”: "8639",

3 "uri_path_search™: "servicesNS/nobody/search/saved/searches”,

- “uri path lookups”: “servicesNS/nobody/search/data/lookup-table-files”,
16 "uri_path lookups upload”: "services/data/lookup edit/lookup contents”,
11 "search_path”: "search”,

12 "lookup path”: "lookups”,
13 “archive path”: "archive”,
14 "metadata ext”: ".metadata”

sh "python3 $WORKSPACE/splunk _api.py --username ${USER} --password ${PASS}"

© 2025 SPLUNK LLC

config.json (dashboards)

R

{

, "username”: "",

: "password”: "",

4 "use _https”: true,

5 "url”: “SPLUNK.SERVER.IP",

: "port™: "8089",

"uri_path”: "servicesNS/nobody/search/data/ui/views”,
3 “"search path”: "dashboards”,

"metadata ext”: ".metadata”

© 2025 SPLUNK LLC

permissions.json

1 v{

2 “user”: "nobody",
“app”: "search”,

4 “sharing”: "global”,

5 “owner”: "nobody"”,
"perms.read”: "*",

7 “perms.write”: "admin”

3}

Repository Structure
(alerts/reports/lookups)

B archive

B lookups

B search

[Jenkinsfile

(9 README.md

0 Testing Instructions
0 config.json

0O permissions.json

0O splunk_api.py

LIl README

Repository Structure (dashboards)

B8 dashboards
' JenkinsFile
] README.md
k config.json

0 permissions.json

& splunk_api.py

(1] README

Automation walkthrough cont.

e The python script for alerts, reports and lookups:

- Reads configuration and credentials from a JSON file

- Detects changed Splunk knowledge object files using Git

- Processes search, alert, and lookup files from designated directories as defined in the
config.json file

- Loads associated metadata for each object by matching the filename with the
corresponding filename ending in .metadata

- Prepares and formats data for API submission

- Uses the Splunk REST API to create, update, or delete objects on the search head cluster

- Updates permissions to make objects public for all users

© 2025 SPLUNK LLC

Automation walkthrough cont.

Main function
def main():
Creating an-ArgumentParser object

parser = argparse.ArgumentParser(description="<Your parser description here>"

Adding arguments to-the parser
parser.add_argument(”-v", "--verbose”,

required=False,

help="Increase output verbosity”,

default=0,

action="count™)
parser.add_argument(”--username”,

required=False,

help="username accessing Splunk”,

default="api_user”,

metavar="<string>")
parser.add_argument(”--password”,

required=False,

help="password accessing Splunk”,

default="",

metavar="<string>")
parser.add_argument(”--processall”,

required=False,

help="Process all files”,

default=False,

action="store_true")
parser.add_argument(”--test”,

required=False,

help="Use QA Splunk URL",

default=False,

action="store_true")

© 2025 SPLUNK LLC

>)

-

Get the 1l

st files changed in the merge

a
changed files = get changed files()

Function to get the list of files changed in the
def get changed files():
files changed = []
Run the git command to get the list of files
process = subprocess.PopenI['git', log', "-m’

last merge

changed in the last merge
‘--name-only’, "-1'],

Automation walkthrough cont.

for dirpath, dirnames, filenames in os.walk(dir path + "/" + config["archive path"]):
for filename in filenames:
if (any(filename in files for files in changed files)):
print (os.path.join(dirpath, filename))
it (re.search('\.metadata$’, dirpath + /" + filename)):
print ("Skipping file: " + dirpath + "/" + filename)
continue
else:
print ("Using file: " + dirpath + "/" + filename)
post data = {}
make api call(config, args, filename, post data, "archive")

© 2025 SPLUNK LLC

Automation walkthrough cont.

© 2025 SPLUNK LLC

for dirpath, dirnames, filenames in os.walk(dir_path + "/" + config[“search path"]):

For each file in the directory
for filename in filenames:
If the file is in the list of changed files or if the processall argument is True
if (any(filename in files for files in changed files) or args.processall):
print (os.path.join(dirpath, filename))
If the file is a metadata file, skip it
if (re.search(’'\.metadata$’', dirpath + "/" + filename)):
print ("Skipping file: " + dirpath + /" + filename)
continue
else:
Otherwise, open the file and read its contents
print ("Using file: " + dirpath + "/" + filename)
with open(dirpath + "/" + filename) as f:
post data = {}
post _data["name”] = filename
post data["search”™] = f.read().replace('\n’,
post_data["dispatch.earliest time"] = "-15m"
post _data["dispatch.latest time"] = "now"
If there is a metadata file for this file, open it and load its contents
if (os.path.isfile(dirpath + "/" + filename + config|"metadata ext"])):
with open(dirpath + /" + filename + config[“metadata ext™]) as meta f:
metadata = json.load(meta f)
post data.update(metadata)
Make an API call with the post data
make api call(config, args, filename, post data, "search”)

").replace('\r’', " ")

Automation walkthrough cont.

def get lookup data(dirpath,filename):
Read data from CSV file
lookup content = []
try:
with open(dirpath + /" + filename, encoding="utf-8', errors="ignore’') as file:
reader = csv.reader(file)
for row in reader:
i print(row)

| lookup content.append(row)

except Exception as e:
print("Error reading {} : {}".format(filename,e))

post data = {}
post data={ "namespace”: "search”,
"lookup file": filename,

“contents”: json.dumps(lookup content),
“owner”: "nobody” }
return post data

© 2025 SPLUNK LLC

Automation walkthrough cont.

if call type=="1lookup”:

Lookups are updated using the Lookup Editor App endpoints

url string = protocol + "://" + server + ":" + config["port™] + "/" + config["uri path lookups upload”]

Lookup permissions-uri- path

url lookup permissions = protocol +
else:

search url path

url string = protocol + "://" + server + ":" + config["port”] + "/" + config["uri path search"] + "/"

"://" + server + ":" + config["port"] + "/" + config["uri path lookups™] + "/"

try:
if call type == "search":

Check to see if the saved search already exists

response = requests.get(url_string + urllib.request.quote(object name) + "2output mode=json”, auth = requests.auth.HTTPBasicAuth(args.username,args.password), verify=False)

results = response.text

If the search exists, update it

if str(response.status_code)=="200":
print ("Search Exists, Updating existing one")
del post_data["name"]
response = requests.post(url string + urllib.request.quote(object name) + "?output mode=json”, auth = requests.auth.HTTPBasicAuth(args.username,args.password), verify=False, data=post data)
results = response.text

If the server response indicates that the search does not exist (HTTP status code 484)
elif(str(response.status_code)=="404"):

print ("Search does not exist, creating new one")

try:

© 2025 SPLUNK LLC

Automation walkthrough cont.

else:

print ("Lookup is being added/updated”)

try:
Attempt to create/update a lookup by sending:a:POST request
response = requests.post(url string + "?output mode=json”, auth = requests.auth.HTTPBasicAuth(args.username,args.password), verify=False, data=post data)
results = response.text
print (results)

except urllib.error.HTTPError as e:

If an HTTP error occurs, print the error-and exit the progran
print ("Unknown Error: " + str(e))
exit(1)

© 2025 SPLUNK LLC

Automation walkthrough cont.

Update permissions
print ("Updating Permissions™)
Open- the permissions.json file and load its contents into post data
with open(dir_path + "/" + "permissions.json”) as perm file:
post data = json.load(perm file)
if call _type == "lookup“1
| # The lookup acl endpoint-doesn't not need the app and user parameters so these need to be removed.
del post_data["app”], post data[“"user”]
response = requests.post(url_lookup permissions + urllib.request.quote(object name) + "/acl", auth = requests.auth.HTTPBasicAuth(args.username,args.password), verify=False, data=post_data)
results = response.text
print ("Updated Lookup Permissions™)
else:

Send a POST request to-update the permissions of the search

response = requests.post(url_string + urllib.request.quote(object name) + "/acl”, auth = requests.auth.HTTPBasicAuth(args.username,args.password), verify=False, data=post_data)
results = response.text

v

© 2025 SPLUNK LLC

Automation walkthrough cont.

e The python script for dashboards slightly differs by:

- Processing dashboard XML from the dashboard directory (and subdirectories)

- Prepares and formats dashboard data for API submission by stripping unnecessary whitespaces and
handling special characters

- The user must account for the XML wrapper for dashboard studio json code

- Settings > All Configurations

- Search for dashboard name

- Click on dashboard name and copy all code including the xml wrapper

© 2025 SPLUNK LLC

Automation walkthrough cont.

“port™: "8089",
"uri_path”: "servicesNS/nobody/search/data/ui/views”,
"search _path™: "dashboards”,

with open(dirpath + "/" + filename, encoding="utf-8") as f:
post data = {}
post data["name”] = filename
post data["eai:data”] = f.read().replace('\n’', ' ").replace(’'\r', ' ").replace('\t’, " ")
logger.info("Post Data: " + str(post data))
make api call(config, args, filename, post data)

© 2025 SPLUNK LLC

e Customers create
searches & dashboards
in the web UI

e Fork the repo and submit
a PR with their
updated/new code

e Splunk admins review
the PR

e Request changes &
assist as necessary

e Merge the PR when
appropriate, kicking off
the pipeline

© 2025 SPLUNK LLC

Code | Blame @18 lines (18 loc) - 574 Bytes

Workflow cont 5
[2 "action.script”: 1,
3 "action.script.filename”: "script_name.py”,
4 "actions™: "script,bigpanda_alert”,
1 index=windows sourcetype=*perf* cpu OR processor earliest=-5m latest=now E =action.keyindicator.invert™: "0,
2 | where cpu_usage_percent>95 OR '% Processor Time'>95 6 "action.makestreams.param.verbose™: "@",
3 | eval 7 "alert.suppress™: "1",
- cpu_value=coalesce(cpu_usage_percent, '% Processor Time'), 8 "alert.suppress.period”: "1h",
5 alert_time=strftime(_time, "%m/%d/%Y %H:%M:%S5"), 9 "alert.track™: "1",
6 severity=if(cpu_value>=98, "Critical™, "High"), 10 "alert_comparator": "greater than",
7 ticket_summary="High CPU Alert: " + host + " at " + round(cpu_value,l) + "%" 11 "alert_threshold": "@",
8 | stats 12 "alert_type": "number of events”,
9 latest(alert_time) as "Alert Time", 13 "cron_schedule®: "5 8 * * 0,2,3,4,5",
10 max(cpu_value) as "Peak CPU %", 14 "is_scheduled”: "1",
11 latest(severity) as "Severity”, 15 "disabled": "0",
12 latest(ticket summary) as "Ticket Summary” 16 "request.ui_dispatch_app”: "search”,
13 by host 17 "request.ui_dispatch_view": "search”
14 | table host "Alert Time"™ "Peak CPU %" "Severity"™ "Ticket Summary” = ¥

! | rest /servicesNS/-/-/saved/searches
2 | table title app search description cron_schedule is_scheduled dispatch.earliest_time dispatch.latest_time eai:acl.owner eai:acl.app eai:acl.sharing eai
:digest disabled actionsl

© 2025 SPLUNK LLC

Benefits of
CIl/CD
automation

Freedom for customers
to self-serve & learn
Splunk at their pace

Greatly reduced
development work for
Splunk Admins

Backups of Splunk
knowledge objects

Revision history and
rollbacks

Long-term audit trail

© 2025 SPLUNK LLC

Thank you

